ﻻ يوجد ملخص باللغة العربية
Recent advances in reinforcement learning have inspired increasing interest in learning user modeling adaptively through dynamic interactions, e.g., in reinforcement learning based recommender systems. Reward function is crucial for most of reinforcement learning applications as it can provide the guideline about the optimization. However, current reinforcement-learning-based methods rely on manually-defined reward functions, which cannot adapt to dynamic and noisy environments. Besides, they generally use task-specific reward functions that sacrifice generalization ability. We propose a generative inverse reinforcement learning for user behavioral preference modelling, to address the above issues. Instead of using predefined reward functions, our model can automatically learn the rewards from users actions based on discriminative actor-critic network and Wasserstein GAN. Our model provides a general way of characterizing and explaining underlying behavioral tendencies, and our experiments show our method outperforms state-of-the-art methods in a variety of scenarios, namely traffic signal control, online recommender systems, and scanpath prediction.
Imitation learning in a high-dimensional environment is challenging. Most inverse reinforcement learning (IRL) methods fail to outperform the demonstrator in such a high-dimensional environment, e.g., Atari domain. To address this challenge, we propo
This paper explores a simple regularizer for reinforcement learning by proposing Generative Adversarial Self-Imitation Learning (GASIL), which encourages the agent to imitate past good trajectories via generative adversarial imitation learning framew
Imitation learning (IL) aims to learn a policy from expert demonstrations that minimizes the discrepancy between the learner and expert behaviors. Various imitation learning algorithms have been proposed with different pre-determined divergences to q
We study risk-sensitive imitation learning where the agents goal is to perform at least as well as the expert in terms of a risk profile. We first formulate our risk-sensitive imitation learning setting. We consider the generative adversarial approac
Developments in deep generative models have allowed for tractable learning of high-dimensional data distributions. While the employed learning procedures typically assume that training data is drawn i.i.d. from the distribution of interest, it may be