ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Measures in a Nonequilibrium Steady State: Exact Results in One Dimension

278   0   0.0 ( 0 )
 نشر من قبل Shachar Fraenkel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement plays a prominent role in the study of condensed matter many-body systems: Entanglement measures not only quantify the possible use of these systems in quantum information protocols, but also shed light on their physics. However, exact analytical results remain scarce, especially for systems out of equilibrium. In this work we examine a paradigmatic one-dimensional fermionic system that consists of a uniform tight-binding chain with an arbitrary scattering region near its center, which is subject to a DC bias voltage at zero temperature. The system is thus held in a current-carrying nonequilibrium steady state, which can nevertheless be described by a pure quantum state. Using a generalization of the Fisher-Hartwig conjecture, we present an exact calculation of the bipartite entanglement entropy of a subsystem with its complement, and show that the scaling of entanglement with the length of the subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term. The linear term is related to imperfect transmission due to scattering, and provides a generalization of the Levitov-Lesovik full counting statistics formula. The logarithmic term arises from the Fermi discontinuities in the distribution function. Our analysis also produces an exact expression for the particle-number-resolved entanglement. We find that although to leading order entanglement equipartition applies, the first term breaking it grows with the size of the subsystem, a novel behavior not observed in previously studied systems. We apply our general results to a concrete model of a tight-binding chain with a single impurity site, and show that the analytical expressions are in good agreement with numerical calculations. The analytical results are further generalized to accommodate the case of multiple scattering regions.



قيم البحث

اقرأ أيضاً

We propose a quantum algorithm in an embedding ion-trap quantum simulator for the efficient computation of N-qubit entanglement monotones without the necessity of full tomography. Moreover, we discuss possible realistic scenarios and study the associated decoherence mechanisms.
The key to explaining a wide range of quantum phenomena is understanding how entanglement propagates around many-body systems. Furthermore, the controlled distribution of entanglement is of fundamental importance for quantum communication and computa tion. In many situations, quasiparticles are the carriers of information around a quantum system and are expected to distribute entanglement in a fashion determined by the system interactions. Here we report on the observation of magnon quasiparticle dynamics in a one-dimensional many-body quantum system of trapped ions representing an Ising spin model. Using the ability to tune the effective interaction range, and to prepare and measure the quantum state at the individual particle level, we observe new quasiparticle phenomena. For the first time, we reveal the entanglement distributed by quasiparticles around a many-body system. Second, for long-range interactions we observe the divergence of quasiparticle velocity and breakdown of the light-cone picture that is valid for short-range interactions. Our results will allow experimental studies of a wide range of phenomena, such as quantum transport, thermalisation, localisation and entanglement growth, and represent a first step towards a new quantum-optical regime with on-demand quasiparticles with tunable non-linear interactions.
We study a disordered ensemble of quantum emitters collectively coupled to a lossless cavity mode. The latter is found to modify the localization properties of the dark eigenstates, which exhibit a character of being localized on multiple, noncontigu ous sites. We denote such states as semi-localized and characterize them by means of standard localization measures. We show that those states can very efficiently contribute to coherent energy transport. Our paper underlines the important role of dark states in systems with strong light-matter coupling.
We study the dynamics of two ensembles of atoms (or equivalently, atomic clocks) coupled to a bad cavity and pumped incoherently by a Raman laser. Our main result is the nonequilibrium phase diagram for this experimental setup in terms of two paramet ers - detuning between the clocks and the repump rate. There are three main phases - trivial steady state (Phase I), where all atoms are maximally pumped, nontrivial steady state corresponding to monochromatic superradiance (Phase II), and amplitude-modulated superradiance (Phase III). Phases I and II are fixed points of the mean-field dynamics, while in most of Phase III stable attractors are limit cycles. Equations of motion possess an axial symmetry and a $mathbb{Z}_{2}$ symmetry with respect to the interchange of the two clocks. Either one or both of these symmetries are spontaneously broken in various phases. The trivial steady state loses stability via a supercritical Hopf bifurcation bringing about a $mathbb{Z}_{2}$-symmetric limit cycle. The nontrivial steady state goes through a subcritical Hopf bifurcation responsible for coexistence of monochromatic and amplitude-modulated superradiance. Using Floquet analysis, we show that the $mathbb{Z}_{2}$-symmetric limit cycle eventually becomes unstable and gives rise to two $mathbb{Z}_{2}$-asymmetric limit cycles via a supercritical pitchfork bifurcation. Each of the above attractors has its own unique fingerprint in the power spectrum of the light radiated from the cavity. In particular, limit cycles in Phase III emit frequency combs - series of equidistant peaks, where the symmetry of the frequency comb reflects the symmetry of the underlying limit cycle. For typical experimental parameters, the spacing between the peaks is several orders of magnitude smaller than the monochromatic superradiance frequency, making the lasing frequency highly tunable.
We formulate dynamical phase transitions in subsystems embedded in larger quantum systems. Introducing the entanglement echo as an overlap of the initial and instantaneous entanglement ground states, we show its analytic structure after a quench prov ides natural definition of dynamical phase transitions in the subsystem. These transitions come in two varieties, the entanglement-type transitions and the bulk-type Loschmidt transitions. The entanglement-type transitions arise from periodic reorganization of quantum correlations between the subsystem and its environment, manifesting in instantaneous entanglement ground state degeneracies. Furthermore, the entanglement echo distinguishes the direction of the quench, resolves spatially distinct dynamical phase transitions for non-uniform quenches and give rise to sharply-defined transitions for mixed initial states. We propose an experimental probe to identify entanglement-type transitions through temporal changes in subsystem fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا