ترغب بنشر مسار تعليمي؟ اضغط هنا

Steady Floquet-Andreev States Probed by Tunnelling Spectroscopy

58   0   0.0 ( 0 )
 نشر من قبل Sein Park
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Engineering quantum states through light-matter interaction has created a new paradigm in condensed matter physics. A representative example is the Floquet-Bloch state, which is generated by time-periodically driving the Bloch wavefunctions in crystals. Previous attempts to realise such states in condensed matter systems have been limited by the transient nature of the Floquet states produced by optical pulses, which masks the universal properties of non-equilibrium physics. Here, we report the generation of steady Floquet Andreev (F-A) states in graphene Josephson junctions by continuous microwave application and direct measurement of their spectra by superconducting tunnelling spectroscopy. We present quantitative analysis of the spectral characteristics of the F-A states while varying the phase difference of superconductors, temperature, microwave frequency and power. The oscillations of the F-A state spectrum with phase difference agreed with our theoretical calculations. Moreover, we confirmed the steady nature of the F-A states by establishing a sum rule of tunnelling conductance, and analysed the spectral density of Floquet states depending on Floquet interaction strength. This study provides a basis for understanding and engineering non-equilibrium quantum states in nano-devices.



قيم البحث

اقرأ أيضاً

We measure the excitation spectrum of a superconducting atomic contact. In addition to the usual continuum above the superconducting gap, the single particle excitation spectrum contains discrete, spin-degenerate Andreev levels inside the gap. Quasip article excitations are induced by a broadband on-chip microwave source and detected by measuring changes in the supercurrent flowing through the atomic contact. Since microwave photons excite quasiparticles in pairs, two types of transitions are observed: Andreev transitions, which consists of putting two quasiparticles in an Andreev level, and transitions to odd states with a single quasiparticle in an Andreev level and the other one in the continuum. In contrast to absorption spectroscopy, supercurrent spectroscopy allows detection of long-lived odd states.
We have performed microwave spectroscopy of Andreev states in superconducting weak links tailored in an InAs-Al (core-full shell) epitaxially-grown nanowire. The spectra present distinctive features, with bundles of four lines crossing when the super conducting phase difference across the weak link is 0 or $pi.$ We interpret these as arising from zero-field spin-split Andreev states. A simple analytical model, which takes into account the Rashba spin-orbit interaction in a nanowire containing several transverse subbands, explains these features and their evolution with magnetic field. Our results show that the spin degree of freedom is addressable in Josephson junctions, and constitute a first step towards its manipulation.
We demonstrate several new electron transport phenomena mediated by Andreev bound states (ABSs) that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal metal (N) contacts. Thre e-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state transition S-QD systems can occur. We ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process called excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a novel mechanism called resonant ABS tunneling. In the latter, electrons are transferred via the ABS without creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single electron tunneling event. These experiments demonstrate that three-terminal experiments on a single complex quantum object can also be useful to investigate charge dynamics otherwise not accessible due to the very high frequencies.
318 - B. Han , C. Robert , E. Courtade 2018
Transitions metal dichalcogenides (TMDs) are direct semiconductors in the atomic monolayer (ML) limit with fascinating optical and spin-valley properties. The strong optical absorption of up to 20 % for a single ML is governed by excitons, electron-h ole pairs bound by Coulomb attraction. Excited exciton states in MoSe$_2$ and MoTe$_2$ monolayers have so far been elusive due to their low oscillator strength and strong inhomogeneous broadening. Here we show that encapsulation in hexagonal boron nitride results in emission line width of the A:1$s$ exciton below 1.5 meV and 3 meV in our MoSe$_2$ and MoTe$_2$ monolayer samples, respectively. This allows us to investigate the excited exciton states by photoluminescence upconversion spectroscopy for both monolayer materials. The excitation laser is tuned into resonance with the A:1$s$ transition and we observe emission of excited exciton states up to 200 meV above the laser energy. We demonstrate bias control of the efficiency of this non-linear optical process. At the origin of upconversion our model calculations suggest an exciton-exciton (Auger) scattering mechanism specific to TMD MLs involving an excited conduction band thus generating high energy excitons with small wave-vectors. The optical transitions are further investigated by white light reflectivity, photoluminescence excitation and resonant Raman scattering confirming their origin as excited excitonic states in monolayer thin semiconductors.
128 - HaiOu Li , Ming Xiao , Gang Cao 2011
The quantum point contact (QPC) back-action has been found to cause non-thermal-equilibrium excitations to the electron spin states in a quantum dot (QD). Here we use back-action as an excitation source to probe the spin excited states spectroscopy f or both the odd and even electron numbers under a varying parallel magnetic field. For a single electron, we observed the Zeeman splitting. For two electrons, we observed the splitting of the spin triplet states $|T^{+}>$ and $|T^{0}>$ and found that back-action drives the singlet state $|S>$ overwhelmingly to $|T^{+}>$ other than $|T^{0}>$. All these information were revealed through the real-time charge counting statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا