ترغب بنشر مسار تعليمي؟ اضغط هنا

The use of astronomy VLBA campaign MOJAVE for geodesy

95   0   0.0 ( 0 )
 نشر من قبل Leonid Petrov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the suitability of the astronomical 15 GHz VLBA observing program MOJAVE-5 for estimation of geodetic parameters, such as station coordinates and Earth orientation parameters. We processed contemporary geodetic dual-band RV and CN experiments observed at 2.3 GHz and 8.6 GHz starting on September 2016 through July 2020 as reference dataset. We showed that the baseline length repeatability from MOJAVE-5 experiments is only a factor of 1.5 greater than from the dedicated geodetic dataset and still below 1~ppb. The wrms of the difference of estimated EOP with respect to the reference IERS C04 time series are a factor of 1.3 to 1.8 worse. We isolated three major differences between the datasets in terms their possible impact on the geodetic results, i.e. the scheduling approach, treatment of the ionospheric delay, and selection of target radio sources. We showed that the major factor causing discrepancies in the estimated geodetic parameters is the different scheduling approach of the datasets. We conclude that systematic errors in MOJAVE-5 dataset are low enough for these data to be used as an excellent testbed for further investigations on the radio source structure effects in geodesy and astrometry.



قيم البحث

اقرأ أيضاً

150 - Zinovy Malkin 2016
The Allan variance (AVAR) was introduced 50 years ago as a statistical tool for assessing of the frequency standards deviations. For the past decades, AVAR has increasingly being used in geodesy and astrometry to assess the noise characteristics in g eodetic and astrometric time series. A specific feature of astrometric and geodetic measurements, as compared with the clock measurements, is that they are generally associated with uncertainties; thus, an appropriate weighting should be applied during data analysis. Besides, some physically connected scalar time series naturally form series of multi-dimensional vectors. For example, three station coordinates time series $X$, $Y$, and $Z$ can be combined to analyze 3D station position variations. The classical AVAR is not intended for processing unevenly weighted and/or multi-dimensional data. Therefore, AVAR modifications, namely weighted AVAR (WAVAR), multi-dimensional AVAR (MAVAR), and weighted multi-dimensional AVAR (WMAVAR), were introduced to overcome these deficiencies. In this paper, a brief review is given of the experience of using AVAR and its modifications in processing astro-geodetic time series.
Satellite geodesy uses the measurement of the motion of one or more satellites to infer precise information about the Earths gravitational field. In this work, we consider the achievable precision limits on such measurements by examining the three ma in noise sources in the measurement process of the current Gravitational Recovery and Climate Experiment (GRACE) Follow-On mission: laser phase noise, accelerometer noise and quantum noise. We show that, through time-delay interferometry, it is possible to remove the laser phase noise from the measurement, allowing for up to three orders of magnitude improvement in the signal-to-noise ratio. Several differential mass satellite formations are presented which can further enhance the signal-to-noise ratio through the removal of accelerometer noise. Finally, techniques from quantum optics have been studied, and found to have great promise for reducing quantum noise in other alternative mission configurations. We model the spectral noise performance using an intuitive 1D model and verify that our proposals have the potential to greatly enhance the performance of near-future satellite geodesy missions.
The European Space Agency (ESA) will inaugurate its third Deep Space Antenna (DSA 3) by the end of 2012. DSA 3 will be located in Argentina near the city of Malargue in the Mendoza province. While the instrument will be primarily dedicated to communi cations with interplanetary missions, the characteristics of its antenna and receivers will also enable standalone leading scientific contributions, with a high scientific-technological return. We outline here scientific proposals for a radio astronomical use of DSA 3.
274 - M. L. Lister 2008
We present images from a long term program (MOJAVE: Monitoring of Jets in AGN with VLBA Experiments) to survey the structure and evolution of parsec-scale jet phenomena associated with bright radio-loud active galaxies in the northern sky. The observ ations consist of 2424 15 GHz VLBA images of a complete flux-density limited sample of 135 AGN above declination -20 degrees, spanning the period 1994 August to 2007 September. These data were acquired as part of the MOJAVE and 2 cm Survey programs, and from the VLBA archive. The sample selection criteria are based on multi-epoch parsec-scale (VLBA) flux density, and heavily favor highly variable and compact blazars. The sample includes nearly all the most prominent blazars in the northern sky, and is well-suited for statistical analysis and comparison with studies at other wavelengths. Our multi-epoch and stacked-epoch images show 94% of the sample to have apparent one-sided jet morphologies, most likely due to the effects of relativistic beaming. Of the remaining sources, five have two-sided parsec-scale jets, and three are effectively unresolved by the VLBA at 15 GHz, with essentially all of the flux density contained within a few tenths of a milliarcsecond.
We discuss acceleration measurements for a large sample of extragalactic radio jets from the MOJAVE program which studies the parsec-scale jet structure and kinematics of a complete, flux-density-limited sample of Active Galactic Nuclei (AGN). Accele rations are measured from the apparent motion of individual jet features or components which may represent patterns in the jet flow. We find that significant accelerations are common both parallel and perpendicular to the observed component velocities. Parallel accelerations, representing changes in apparent speed, are generally larger than perpendicular acceleration that represent changes in apparent direction. The trend for larger parallel accelerations indicates that a significant fraction of these changes in apparent speed are due to changes in intrinsic speed of the component rather than changes in direction to the line of sight. We find an overall tendency for components with increasing apparent speed to be closer to the base of their jets than components with decreasing apparent speed. This suggests a link between the observed pattern motions and the underlying flow which, in some cases, may increase in speed close to the base and decrease in speed further out; however, common hydro-dynamical processes for propagating shocks may also play a role. About half of the components show non-radial motion, or a misalignment between the components structural position angle and its velocity direction, and these misalignments generally better align the component motion with the downstream emission. Perpendicular accelerations are closely linked with non-radial motion. When observed together, perpendicular accelerations are usually in the correct direction to have caused the observed misalignment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا