ﻻ يوجد ملخص باللغة العربية
We report on experiments that probe the stability of a two-dimensional jammed granular system formed by imposing a quasistatic simple shear strain $gamma_{rm I}$ on an initially stress free packing. We subject the shear jammed system to quasistatic cyclic shear with strain amplitude $deltagamma$. We observe two distinct outcomes after thousands of shear cycles. For small $gamma_{rm I}$ or large $deltagamma$, the system reaches a stress-free, yielding state exhibiting diffusive strobed particle displacements with a diffusion coefficient proportional to $deltagamma$. For large $gamma_{rm I}$ and small $deltagamma$, the system evolves to a stable state in which both particle positions and contact forces are unchanged after each cycle and the response to small strain reversals is highly elastic. Compared to the original shear jammed state, a stable state reached after many cycles has a smaller stress anisotropy, a much higher shear stiffness, and less tendency to dilate when sheared. Remarkably, we find that stable states show a power-law relation between shear modulus and pressure with an exponent $betaapprox 0.5$, independent of $deltagamma$. Based on our measurements, we construct a phase diagram in the $(gamma_{rm I},deltagamma)$ plane showing where our shear-jammed granular materials either stabilize or yield in the long-time limit.
The question of how a disordered materials microstructure translates into macroscopic mechanical response is central to understanding and designing materials like pastes, foams and metallic glasses. Here, we examine a 2D soft jammed material under cy
We study the jamming phase diagram of sheared granular material using a novel Couette shear set-up with multi-ring bottom. The set-up uses small basal friction forces to apply a volume-conserving linear shear with no shear band to a granular system c
Considering a recently proposed model for the yielding of amorphous solids under cyclic shear deformation, we show that it can be analyzed by mapping it, in the simplest case, to a random walk in a confining potential with an absorbing boundary. The
We study the rheology of dry and wet granular materials in the steady quasistatic regime using the Discrete Element Method (DEM) in a split-bottom ring shear cell with focus on the macroscopic friction. The aim of our study is to understand the local
We present an X-ray tomography study of the segregation mechanisms of tracer particles in a three-dimensional cyclically sheared bi-disperse granular medium. Big tracers are dragged by convection to rise to the top surface and then remain trapped the