Analysis of the differential cross section and photon beam asymmetry data for $gamma p to eta^prime p$


الملخص بالإنكليزية

The photoproduction reaction of $gamma p to eta^prime p$ is investigated based on an effective Lagrangian approach in the tree-level approximation, with the purpose being to understand the reaction mechanisms and to extract the resonance contents and the associated resonance parameters in this reaction. Apart from the $t$-channel $rho$ and $omega$ exchanges, $s$- and $u$-channel nucleon exchanges, and generalized contact term, the exchanges of a minimum number of nucleon resonances in the $s$ channel are taken into account in constructing the reaction amplitudes to describe the experimental data. It is found that a satisfactory description of the available data on both differential cross sections and photon beam asymmetries can be obtained by including in the $s$ channel the exchanges of the $N(1875)3/2^-$ and $N(2040)3/2^+$ resonances. The reaction mechanisms of $gamma p to eta^prime p$ are discussed and a prediction for the target nucleon asymmetries is presented.

تحميل البحث