ﻻ يوجد ملخص باللغة العربية
The photoproduction reaction of $gamma p to eta^prime p$ is investigated based on an effective Lagrangian approach in the tree-level approximation, with the purpose being to understand the reaction mechanisms and to extract the resonance contents and the associated resonance parameters in this reaction. Apart from the $t$-channel $rho$ and $omega$ exchanges, $s$- and $u$-channel nucleon exchanges, and generalized contact term, the exchanges of a minimum number of nucleon resonances in the $s$ channel are taken into account in constructing the reaction amplitudes to describe the experimental data. It is found that a satisfactory description of the available data on both differential cross sections and photon beam asymmetries can be obtained by including in the $s$ channel the exchanges of the $N(1875)3/2^-$ and $N(2040)3/2^+$ resonances. The reaction mechanisms of $gamma p to eta^prime p$ are discussed and a prediction for the target nucleon asymmetries is presented.
High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the
Differential cross sections and photon beam asymmetries for the gamma p -> pi+ n reaction have been measured for 0.6<cos(theta)<1 and Egamma=1.5-2.95 GeV at SPring-8/LEPS. The cross sections monotonically decrease as the photon beam energy increases
We calculate the single spin asymmetry for the $e p to e Delta(1232)$ process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation, and are directly proportional
Differential cross sections and photon-beam asymmetries for the gamma p -> pi- Delta++(1232) reaction have been measured for 0.7<cos(theta)<1 and Egamma=1.5-2.95 GeV at SPring-8/LEPS. The first-ever high statistics cross section data are obtained in
We observe the process $psi(3686) to p bar{p} eta^{prime}$ for the first time, with a statistical significance higher than 10$sigma$, and measure the branching fraction of $J/psi to p bar{p} eta^{prime}$ with an improved accuracy compared to earlier