ﻻ يوجد ملخص باللغة العربية
Natural language processing (NLP) systems have been proven to be vulnerable to backdoor attacks, whereby hidden features (backdoors) are trained into a language model and may only be activated by specific inputs (called triggers), to trick the model into producing unexpected behaviors. In this paper, we create covert and natural triggers for textual backdoor attacks, textit{hidden backdoors}, where triggers can fool both modern language models and human inspection. We deploy our hidden backdoors through two state-of-the-art trigger embedding methods. The first approach via homograph replacement, embeds the trigger into deep neural networks through the visual spoofing of lookalike character replacement. The second approach uses subtle differences between text generated by language models and real natural text to produce trigger sentences with correct grammar and high fluency. We demonstrate that the proposed hidden backdoors can be effective across three downstream security-critical NLP tasks, representative of modern human-centric NLP systems, including toxic comment detection, neural machine translation (NMT), and question answering (QA). Our two hidden backdoor attacks can achieve an Attack Success Rate (ASR) of at least $97%$ with an injection rate of only $3%$ in toxic comment detection, $95.1%$ ASR in NMT with less than $0.5%$ injected data, and finally $91.12%$ ASR against QA updated with only 27 poisoning data samples on a model previously trained with 92,024 samples (0.029%). We are able to demonstrate the adversarys high success rate of attacks, while maintaining functionality for regular users, with triggers inconspicuous by the human administrators.
Advanced neural language models (NLMs) are widely used in sequence generation tasks because they are able to produce fluent and meaningful sentences. They can also be used to generate fake reviews, which can then be used to attack online review syste
Language is crucial for human intelligence, but what exactly is its role? We take language to be a part of a system for understanding and communicating about situations. The human ability to understand and communicate about situations emerges gradual
Reward learning enables the application of reinforcement learning (RL) to tasks where reward is defined by human judgment, building a model of reward by asking humans questions. Most work on reward learning has used simulated environments, but comple
Humans carry stereotypic tacit assumptions (STAs) (Prince, 1978), or propositional beliefs about generic concepts. Such associations are crucial for understanding natural language. We construct a diagnostic set of word prediction prompts to evaluate
How can we train a dialog model to produce better conversations by learning from human feedback, without the risk of humans teaching it harmful chat behaviors? We start by hosting models online, and gather human feedback from real-time, open-ended co