ترغب بنشر مسار تعليمي؟ اضغط هنا

Constructing certain families of $mathbf{3}$-polytopal graphs

57   0   0.0 ( 0 )
 نشر من قبل Riccardo Walter Maffucci
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $ngeq 3$ and $r_n$ be a $3$-polytopal graph such that for every $3leq ileq n$, $r_n$ has at least one vertex of degree $i$. We find the minimal vertex count for $r_n$. We then describe an algorithm to construct the graphs $r_n$. A dual statement may be formulated for faces of $3$-polytopes. The ideas behind the algorithm generalise readily to solve related problems. Moreover, given a $3$-polytope $t_l$ comprising a vertex of degree $i$ for all $3leq ileq l$, $l$ fixed, we define an algorithm to output for $n>l$ a $3$-polytope $t_n$ comprising a vertex of degree $i$, for all $3leq ileq n$, and such that the initial $t_l$ is a subgraph of $t_n$. The vertex count of $t_n$ is asymptotically optimal, in the sense that it matches the aforementioned minimal vertex count up to order of magnitude, as $n$ gets large. In fact, we only lose a small quantity on the coefficient of the second highest term, and this quantity may be taken as small as we please, with the tradeoff of first constructing an accordingly large auxiliary graph.



قيم البحث

اقرأ أيضاً

This note wants to explain how to obtain meaningful pictures of (possibly high-dimensional) convex polytopes, triangulated manifolds, and other objects from the realm of geometric combinatorics such as tight spans of finite metric spaces and tropical polytopes. In all our cases we arrive at specific, geometrically motivated, graph drawing problems. The methods displayed are implemented in the software system polymake.
119 - Mengjiao Rao , Tao Wang 2020
DP-coloring is a generalization of list coloring, which was introduced by Dvov{r}{a}k and Postle [J. Combin. Theory Ser. B 129 (2018) 38--54]. Zhang [Inform. Process. Lett. 113 (9) (2013) 354--356] showed that every planar graph with neither adjacent triangles nor 5-, 6-, 9-cycles is 3-choosable. Liu et al. [Discrete Math. 342 (2019) 178--189] showed that every planar graph without 4-, 5-, 6- and 9-cycles is DP-3-colorable. In this paper, we show that every planar graph with neither adjacent triangles nor 5-, 6-, 9-cycles is DP-3-colorable, which generalizes these results. Yu et al. gave three Bordeaux-type results by showing that (i) every planar graph with the distance of triangles at least three and no 4-, 5-cycles is DP-3-colorable; (ii) every planar graph with the distance of triangles at least two and no 4-, 5-, 6-cycles is DP-3-colorable; (iii) every planar graph with the distance of triangles at least two and no 5-, 6-, 7-cycles is DP-3-colorable. We also give two Bordeaux-type results in the last section: (i) every plane graph with neither 5-, 6-, 8-cycles nor triangles at distance less than two is DP-3-colorable; (ii) every plane graph with neither 4-, 5-, 7-cycles nor triangles at distance less than two is DP-3-colorable.
99 - Peter Dukes 2014
Recall that in a laminar family, any two sets are either disjoint or contained one in the other. Here, a parametrized weakening of this condition is introduced. Let us say that a set system $mathcal{F} subseteq 2^X$ is $t$-laminar if $A,B in mathcal{ F}$ with $|A cap B| ge t$ implies $A subseteq B$ or $B subseteq A$. We obtain very close asymptotic bounds in terms of $n$ on the maximum size of a $2$-laminar family $mathcal{F} subseteq 2^{[n]}$. A construction for $3$-laminar families and a crude analysis for general $t$ are also given.
The first known families of cages arised from the incidence graphs of generalized polygons of order $q$, $q$ a prime power. In particular, $(q+1,6)$--cages have been obtained from the projective planes of order $q$. Morever, infinite families of smal l regular graphs of girth 5 have been constructed performing algebraic operations on $mathbb{F}_q$. In this paper, we introduce some combinatorial operations to construct new infinite families of small regular graphs of girth 7 from the $(q+1,8)$--cages arising from the generalized quadrangles of order $q$, $q$ a prime power.
In this paper we obtain $(q+3)$--regular graphs of girth 5 with fewer vertices than previously known ones for $q=13,17,19$ and for any prime $q ge 23$ performing operations of reductions and amalgams on the Levi graph $B_q$ of an elliptic semiplane o f type ${cal C}$. We also obtain a 13-regular graph of girth 5 on 236 vertices from $B_{11}$ using the same technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا