ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical emulation of quantum states with coherent mixtures

68   0   0.0 ( 0 )
 نشر من قبل Dmitri Mogilevtsev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a classical emulation methodology to emulate quantum phenomena arising from any non-classical quantum state using only a finite set of coherent states or their statistical mixtures. This allows us to successfully reproduce well-known quantum effects using resources that can be much more feasibly generated in the laboratory. We present a simple procedure to experimentally carry out quantum-state emulation with coherent states that also applies to any general set of classical states that are easier to generate, and demonstrate its capabilities in observing the Hong-Ou-Mandel effect, violating Bell inequalities and witnessing quantum non-classicality.



قيم البحث

اقرأ أيضاً

This paper describes a novel approach to emulate a universal quantum computer with a wholly classical system, one that uses a signal of bounded duration and amplitude to represent an arbitrary quantum state. The signal may be of any modality (e.g. ac oustic, electromagnetic, etc.) but this paper will focus on electronic signals. Individual qubits are represented by in-phase and quadrature sinusoidal signals, while unitary gate operations are performed using simple analog electronic circuit devices. In this manner, the Hilbert space structure of a multi-qubit quantum state, as well as a universal set of gate operations, may be fully emulated classically. Results from a programmable prototype system are presented and discussed.
We demonstrate that superpositions of coherent and displaced Fock states, also referred to as generalized Schrodinger cats cats, can be created by application of a nonlinear displacement operator which is a deformed version of the Glauber displacemen t operator. Consequently, such generalized cat states can be formally considered as nonlinear coherent states. We then show that Glauber-Fock photonic lattices endowed with alternating positive and negative coupling coefficients give rise to classical analogs of such cat states. In addition, it is pointed out that the analytic propagator of these deformed Glauber-Fock arrays explicitly contains the Wigner operator opening the possibility to observe Wigner functions of the quantum harmonic oscillator in the classical domain.
In this article we extend results from our previous work [Bendersky, de la Torre, Senno, Figueira and Acin, Phys. Rev. Lett. 116, 230406 (2016)] by providing a protocol to distinguish in finite time and with arbitrarily high success probability any a lgorithmic mixture of pure states from the maximally mixed state. Moreover, we introduce a proof-of-concept experiment consisting in a situation where two different random sequences of pure states are prepared; these sequences are indistinguishable according to quantum mechanics, but they become distinguishable when randomness is replaced with pseudorandomness within the preparation process.
Quantum mechanics allows entanglement enhanced measurements to be performed, but loss remains an obstacle in constructing realistic quantum metrology schemes. However, recent work has revealed that entangled coherent states (ECSs) have the potential to perform robust sub-classical measurements [J. Joo et. al., Phys. Rev. Lett. 107, 83601 (2011)]. Up to now no read out scheme has been devised which exploits this robust nature of ECSs, but we present here an experimentally accessible method of achieving precision close to the theoretical bound, even with loss. We show substantial improvements over unentangled classical states and highly-entangled NOON states for a wide range of loss values, elevating quantum metrology to a realizable technology in the near future.
A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach uncon ditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in this quantum advantage. We show that, in this scenario, the quantum discord quantifies the advantage of the quantum protocol over the corresponding classical one for any classical-quantum state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا