ﻻ يوجد ملخص باللغة العربية
It has been known for many years that the leading correction to the black hole entropy is a logarithmic term, which is universal and closely related to conformal anomaly. A fully consistent analysis of this issue has to take quantum backreactions to the black hole geometry into account. However, it was always unclear how to naturally derive the modified black hole metric especially from an effective action, because the problem refers to the elusive non-locality of quantum gravity. In this paper, we show that this problem can be resolved within an effective field theory (EFT) framework of quantum gravity. Our work suggests that the EFT approach provides a powerful and self-consistent tool for studying the quantum gravitational corrections to black hole geometries and thermodynamics.
We first give a way which satisfies the bidirectional derivation between the generalized uncertainty principle and the corrected entropy of black holes. By this way, the generalized uncertainty principle can be indirectly modified by some correction
We study the entropy of the black hole with torsion using the covariant form of the partition function. The regularization of infinities appearing in the semiclassical calculation is shown to be consistent with the grand canonical boundary conditions
The role of torsion in quantum three-dimensional gravity is investigated by studying the partition function of the Euclidean theory in Riemann-Cartan spacetime. The entropy of the black hole with torsion is found to differ from the standard Bekenstei
Asymptotic symmetry of the Euclidean 3D gravity with torsion is described by two independent Virasoro algebras with different central charges. Elements of this boundary conformal structure are combined with Cardys formula to calculate the black hole entropy.
In this work, starting by simple, approximate (quasi-classical) methods presented in our previous works, we suggest a simple determination of the (logarithmic) corrections of (Schwarzschild) black hole entropy without knowing the details of quantum g