ﻻ يوجد ملخص باللغة العربية
We generalize some known results for limit groups over free groups and residually free groups to limit groups over Droms RAAGs and residually Droms RAAGs, respectively. We show that limit groups over Droms RAAGs are free-by-(torsion-free nilpotent). We prove that if $S$ is a full subdirect product of type $FP_s(mathbb{Q})$ of limit groups over Droms RAAGs with trivial center, then the projection of $S$ to the direct product of any $s$ of the limit groups over Droms RAAGs has finite index. Moreover, we compute the growth of homology groups and the volume gradients for limit groups over Droms RAAGs in any dimension and for finitely presented residually Droms RAAGs of type $FP_m$ in dimensions up to $m$. In particular, this gives the values of the analytic $L^2$-Betti numbers of these groups in the respective dimensions.
For a group $G$ that is a limit group over Droms RAAGs such that $G$ has trivial center, we show that $Sigma^1(G) = emptyset = Sigma^1(G, mathbb{Q})$. For a group $H$ that is a finitely presented residually Droms RAAG we calculate $Sigma^1(H)$ and $S
We prove the statement in the title and exhibit examples of quotients of arbitrary nilpotency class. This answers a question by D. F. Holt.
Let $Gamma$ be a torsion-free hyperbolic group. We study $Gamma$--limit groups which, unlike the fundamental case in which $Gamma$ is free, may not be finitely presentable or geometrically tractable. We define model $Gamma$--limit groups, which alway
In this paper we continue the study of right-angled Artin groups up to commensurability initiated in [CKZ]. We show that RAAGs defined by different paths of length greater than 3 are not commensurable. We also characterise which RAAGs defined by path
Given a finite simplicial graph $Gamma=(V,E)$ with a vertex-labelling $varphi:Vrightarrowleft{text{non-trivial finitely generated groups}right}$, the graph product $G_Gamma$ is the free product of the vertex groups $varphi(v)$ with added relations th