ترغب بنشر مسار تعليمي؟ اضغط هنا

Peculiar atomic bond nature in platinum monatomic chains

221   0   0.0 ( 0 )
 نشر من قبل Jiaqi Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Metal atomic chains have been reported to change their electronic or magnetic properties by slight mechanical stimulus. However, the mechanical response has been veiled because of lack of information on the bond nature. Here, we clarify the bond nature in platinum (Pt) monatomic chains by our developed in-situ transmission electron microscope method. The stiffness is measured with sub N/m precision by quartz length-extension resonator. The bond stiffnesses at the middle of the chain and at the connecting to the base are estimated to be 25 and 23 N/m, respectively, which are higher than the bulk counterpart. Interestingly, the bond length of 0.25 nm is found to be elastically stretched to 0.31 nm, corresponding to 24% in strain. Such peculiar bond nature could be explained by a novel concept of string tension. This study is a milestone that will significantly change the way we think about atomic bonds in one-dimensional substance.



قيم البحث

اقرأ أيضاً

162 - G. Sainath , B.K. Choudhary 2016
For the first time, we report the formation of pentagonal atomic chains during tensile deformation of ultra thin BCC Fe nanowires. Extensive molecular dynamics simulations have been performed on $<$100$>$/{110} BCC Fe nanowires with different cross s ection width varying from 0.404 to 3.634 nm at temperatures ranging from 10 to 900 K. The results indicate that above certain temperature, long and stable pentagonal atomic chains form in BCC Fe nanowires with cross section width less than 2.83 nm. The temperature, above which the pentagonal chains form, increases with increase in nanowire size. The pentagonal chains have been observed to be highly stable over large plastic strains and contribute to high ductility in Fe nanowires.
Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in t he chain, which facilitates the creation of longer atomic chains. The mechanical and electrical properties of these diatomic chains have been investigated by determining local vibration modes of the chain and by measuring the dependence of the average chain-conductance on the length of the chain. Additionally, we have performed calculations that give insight in the physical mechanism of the oxygen-induced strengthening of the linear bonds and the conductance of the metal-oxygen chains.
396 - K. Katcko , E. Urbain , L. Kandpal 2019
Electrically manipulating the quantum properties of nano-objects, such as atoms or molecules, is typically done using scanning tunnelling microscopes and lateral junctions. The resulting nanotransport path is well established in these model devices. Societal applications require transposing this knowledge to nano-objects embedded within vertical solid-state junctions, which can advantageously harness spintronics to address these quantum properties thanks to ferromagnetic electrodes and high-quality interfaces. The challenge here is to ascertain the devices effective, buried nanotransport path, and to electrically involve these nano-objects in this path by shrinking the device area from the macro- to the nano-scale while maintaining high structural/chemical quality across the heterostructure. Weve developed a low-tech, resist- and solvent-free technological process that can craft nanopillar devices from entire in-situ grown heterostructures, and use it to study magnetotransport between two Fe and Co ferromagnetic electrodes across a functional magnetic CoPc molecular layer. We observe how spin-flip transport across CoPc molecular spin chains promotes a specific magnetoresistance effect, and alters the nanojunctions magnetism through spintronic anisotropy. In the process, we identify three magnetic units along the effective nanotransport path thanks to a macrospin model of magnetotransport. Our work elegantly connects the until now loosely associated concepts of spin-flip spectroscopy, magnetic exchange bias and magnetotransport due to molecular spin chains, within a solid-state device. We notably measure a 5.9meV energy threshold for magnetic decoupling between the Fe layers buried atoms and those in contact with the CoPc layer forming the so-called spinterface. This provides a first insight into the experimental energetics of this promising low-power information encoding unit.
Using first-principles calculations, we study the occurrence of non-collinear magnetic order in monatomic Mn chains. First, we focus on freestanding Mn chains and demonstrate that they exhibit a pronounced non-collinear ground state in a large range of interatomic distances between atoms in the chain. By artificially varying the atomic number of Mn we investigate how the magnetic ground state is influenced by alloying the Mn chains with Fe and Cr. With increasing number of 3d-electrons we find a smooth transition in the magnetic phase space starting from an antiferromagnetic state for pure Cr chains through a regime of non-collinear ground states for Mn-rich chains to a ferromagnetic solution approaching the limit of pure Fe chains. Second, we investigate the magnetism in supported Mn chains on the (110)-surfaces of Cu, Pd, and Ag. We show that even a weak chain-surface hybridization is sufficient to dramatically change the magnetic coupling in the chain. Nevertheless, while we observe that Mn chains are antiferromagnetic on Pd(110), a weak non-collinear magnetic order survives for Mn chains on Cu(110) and Ag(110) a few meV in energy below the antiferromagnetic solution. We explain the sensitive dependence of the exchange interaction in Mn chains on the interatomic distance, chemical composition, and their environment based on the competition between the ferromagnetic double exchange and the antiferromagnetic kinetic exchange mechanism. Finally, we perform simulations which predict that the non-collinear magnetic order of Mn chains on Cu(110) and Ag(110) could be experimentally verified by spin-polarized scanning tunneling microscopy.
Monatomic metal (e.g. silver) structures could form preferably at graphene edges. We explore their structural and electronic properties by performing density functional theory based first-principles calculations. The results show that cohesion betwee n metal atoms, as well as electronic coupling between metal atoms and graphene edges offer remarkable structural stability of the hybrid. We find that the outstanding mechanical properties of graphene allow tunable properties of the metal monatomic structures by straining the structure. The concept is extended to metal rings and helices that form at open ends of carbon nanotubes and edges of twisted graphene ribbons. These findings demostrate the role of graphene edges as an efficient one-dimensional template for low-dimensional metal structures that are mechanotunable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا