ﻻ يوجد ملخص باللغة العربية
Metal atomic chains have been reported to change their electronic or magnetic properties by slight mechanical stimulus. However, the mechanical response has been veiled because of lack of information on the bond nature. Here, we clarify the bond nature in platinum (Pt) monatomic chains by our developed in-situ transmission electron microscope method. The stiffness is measured with sub N/m precision by quartz length-extension resonator. The bond stiffnesses at the middle of the chain and at the connecting to the base are estimated to be 25 and 23 N/m, respectively, which are higher than the bulk counterpart. Interestingly, the bond length of 0.25 nm is found to be elastically stretched to 0.31 nm, corresponding to 24% in strain. Such peculiar bond nature could be explained by a novel concept of string tension. This study is a milestone that will significantly change the way we think about atomic bonds in one-dimensional substance.
For the first time, we report the formation of pentagonal atomic chains during tensile deformation of ultra thin BCC Fe nanowires. Extensive molecular dynamics simulations have been performed on $<$100$>$/{110} BCC Fe nanowires with different cross s
Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in t
Electrically manipulating the quantum properties of nano-objects, such as atoms or molecules, is typically done using scanning tunnelling microscopes and lateral junctions. The resulting nanotransport path is well established in these model devices.
Using first-principles calculations, we study the occurrence of non-collinear magnetic order in monatomic Mn chains. First, we focus on freestanding Mn chains and demonstrate that they exhibit a pronounced non-collinear ground state in a large range
Monatomic metal (e.g. silver) structures could form preferably at graphene edges. We explore their structural and electronic properties by performing density functional theory based first-principles calculations. The results show that cohesion betwee