ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Floppy Modes in Epithelial Tissues

105   0   0.0 ( 0 )
 نشر من قبل Harry Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advances in topological mechanics have revealed unusual phenomena such as topologically protected floppy modes and states of self-stress that are exponentially localized at boundaries and interfaces of mechanical networks. In this paper, we explore the topological mechanics of epithelial tissues, where the appearance of these boundary and interface modes could lead to localized soft or stressed spots and play a role in morphogenesis. We consider both a simple vertex model (VM) governed by an effective elastic energy and its generalization to an active tension network (ATN) which incorporates active adaptation of the cytoskeleton. By analyzing spatially periodic lattices at the Maxwell point of mechanical instability, we find topologically polarized phases with exponential localization of floppy modes and states of self-stress in the ATN when cells are allowed to become concave, but not in the VM.



قيم البحث

اقرأ أيضاً

Experimental evidence shows that there is a feedback between cell shape and cell motion. How this feedback impacts the collective behavior of dense cell monolayers remains an open question. We investigate the effect of a feedback that tends to align the cell crawling direction with cell elongation in a biological tissue model. We find that the alignment interaction promotes nematic patterns in the fluid phase that eventually undergo a non-equilibrium phase transition into a quasi-hexagonal solid. Meanwhile, highly asymmetric cells do not undergo the liquid-to-solid transition for any value of the alignment coupling. In this regime, the dynamics of cell centers and shape fluctuation show features typical of glassy systems.
In this paper, we apply persistent entropy, a novel topological statistic, for characterization of images of epithelial tissues. We have found out that persistent entropy is able to summarize topological and geometric information encoded by alpha-com plexes and persistent homology. After using some statistical tests, we can guarantee the existence of significant differences in the studied tissues.
126 - Li Mao , Hongxing Xu 2019
Collective modes in two dimensional topological superconductors are studied by an extended random phase approximation theory while considering the influence of vector field of light. In two situations, the s-wave superconductors without spin-orbit-co upling (SOC), and the hybrid semiconductor and s-wave superconductor layers with strong SOC, we get the analytical results for longitudinal modes which are found to be indeed gapless. Further more, the effective modes volumes can be calculated, the electric and magnetic fields can be expressed as the creation and annihilation operators of such modes. So, one can study the interaction of them with other quasi-particles through fields.
80 - P.D. Sacramento 2017
A characteristic feature of topological systems is the presence of robust gapless edge states. In this work the effect of time-dependent perturbations on the edge states is considered. Specifically we consider perturbations that can be understood as changes of the parameters of the Hamiltonian. These changes may be sudden or carried out at a fixed rate. In general, the edge modes decay in the thermodynamic limit, but for finite systems a revival time is found that scales with the system size. The dynamics of fermionic edge modes and Majorana modes are compared. The effect of periodic perturbations is also referred allowing the appearance of edge modes out of a topologically trivial phase.
The formation of quasi-spherical cages from protein building blocks is a remarkable self-assembly process in many natural systems, where a small number of elementary building blocks are assembled to build a highly symmetric icosahedral cage. In turn, this has inspired synthetic biologists to design de novo protein cages. We use simple models, on multiple scales, to investigate the self-assembly of a spherical cage, focusing on the regularity of the packing of protein-like objects on the surface. Using building blocks, which are able to pack with icosahedral symmetry, we examine how stable these highly symmetric structures are to perturbations that may arise from the interplay between flexibility of the interacting blocks and entropic effects. We find that, in the presence of those perturbations, icosahedral packing is not the most stable arrangement for a wide range of parameters; rather disordered structures are found to be the most stable. Our results suggest that (i) many designed, or even natural, protein cages may not be regular in the presence of those perturbations, and (ii) that optimizing those flexibilities can be a possible design strategy to obtain regular synthetic cages with full control over their surface properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا