ﻻ يوجد ملخص باللغة العربية
We study a self-similar solution of the kinetic equation describing weak wave turbulence in Bose-Einstein condensates. This solution presumably corresponds to an asymptotic behavior of a spectrum evolving from a broad class of initial data, and it features a non-equilibrium finite-time condensation of the wave spectrum $n(omega)$ at the zero frequency $omega$. The self-similar solution is of the second kind, and it satisfies boundary conditions corresponding to a nonzero constant spectrum (with all its derivative being zero) at $omega=0$ and a power-law asymptotic $n(omega) to omega^{-x}$ at $omega to infty ;; xin mathbb{R}^+$. Finding it amounts to solving a nonlinear eigenvalue problem, i.e. finding the value $x^*$ of the exponent $x$ for which these two boundary conditions can be satisfied simultaneously. To solve this problem we develop a new high-precision algorithm based on Chebyshev approximations and double exponential formulas for evaluating the collision integral, as well as the iterative techniques for solving the integro-differential equation for the self-similar shape function. This procedures allow to achieve a solution with accuracy $approx 4.7 %$ which is realized for $x^* approx 1.22$.
For wall-bounded turbulent flows, Townsends attached eddy hypothesis proposes that the logarithmic layer is populated by a set of energetic and geometrically self-similar eddies. These eddies scale with a single length scale, their distance to the wa
Using various techniques from dynamical systems theory, we rigorously study an experimentally validated model by [Barkley et al., Nature, 526:550-553, 2015], which describes the rise of turbulent pipe flow via a PDE system of reduced complexity. The
Turbulent flows under transcritical conditions are present in regenerative cooling systems of rocker engines and extraction processes in chemical engineering. The turbulent flows and the corresponding heat transfer phenomena in these complex processe
Turbulent fluid flows are ubiquitous in nature and technology, and are mathematically described by the incompressible Navier-Stokes equations (INSE). A hallmark of turbulence is spontaneous generation of intense whirls, resulting from amplification o
We investigate the behaviour of a system where a single phase fluid domain is coupled to a biphasic poroelastic domain. The fluid domain consists of an incompressible Newtonian viscous fluid while the poroelastic domain consists of a linear elastic s