ﻻ يوجد ملخص باللغة العربية
We investigate a class of partially device-independent quantum key distribution protocols based on a prepare-and-measure setup which simplifies their implementation. The security of the protocols is based on the assumption that Alices prepared states have limited overlaps, but no explicit bound on the Hilbert space dimension is required. The protocols are therefore immune to attacks on Bobs device, such as blinding attacks. The users can establish a secret key while continuously monitoring the correct functioning of their devices through observed statistics. We report a proof-of-principle demonstration, involving mostly off-the-shelf equipment, as well as a high-efficiency superconducting nanowire detector. A positive key rate is demonstrated over a 4.8 km low-loss optical fiber with finite-key analysis. The prospects of implementing these protocols over longer distances is discussed.
Quantum key distribution establishes a secret string of bits between two distant parties. Of concern in weak laser pulse schemes is the especially strong photon number splitting attack by an eavesdropper, but the decoy state method can detect this at
Quantum key distribution is one of the most fundamental cryptographic protocols. Quantum walks are important primitives for computing. In this paper we take advantage of the properties of quantum walks to design new secure quantum key distribution sc
This chapter describes the application of lasers, specifically diode lasers, in the area of quantum key distribution (QKD). First, we motivate the distribution of cryptographic keys based on quantum physical properties of light, give a brief introduc
We propose a new Quantum Key Distribution method in which Alice sends pairs of qubits to Bob, each in one of four possible states. Bob uses one qubit to generate a secure key and the other to generate an auxiliary key. For each pair he randomly decid
Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against