ﻻ يوجد ملخص باللغة العربية
Recent advances in geometric deep-learning introduce complex computational challenges for evaluating the distance between meshes. From a mesh model, point clouds are necessary along with a robust distance metric to assess surface quality or as part of the loss function for training models. Current methods often rely on a uniform random mesh discretization, which yields irregular sampling and noisy distance estimation. In this paper we introduce MongeNet, a fast and optimal transport based sampler that allows for an accurate discretization of a mesh with better approximation properties. We compare our method to the ubiquitous random uniform sampling and show that the approximation error is almost half with a very small computational overhead.
Multi-task learning is an open and challenging problem in computer vision. The typical way of conducting multi-task learning with deep neural networks is either through handcrafted schemes that share all initial layers and branch out at an adhoc poin
This paper deals with the geometric multi-model fitting from noisy, unstructured point set data (e.g., laser scanned point clouds). We formulate multi-model fitting problem as a sequential decision making process. We then use a deep reinforcement lea
Estimating a depth map from a single RGB image has been investigated widely for localization, mapping, and 3-dimensional object detection. Recent studies on a single-view depth estimation are mostly based on deep Convolutional neural Networks (ConvNe
A major challenge in training deep learning models is the lack of high quality and complete datasets. In the paper, we present a masking approach for training deep learning models from a publicly available but incomplete dataset. For example, city of
We present Point-Voxel CNN (PVCNN) for efficient, fast 3D deep learning. Previous work processes 3D data using either voxel-based or point-based NN models. However, both approaches are computationally inefficient. The computation cost and memory foot