ترغب بنشر مسار تعليمي؟ اضغط هنا

NURBS-Diff: A differentiable programming module for NURBS

70   0   0.0 ( 0 )
 نشر من قبل Anjana Deva Prasad
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Boundary representations (B-reps) using Non-Uniform Rational B-splines (NURBS) are the de facto standard used in CAD, but their utility in deep learning-based approaches is not well researched. We propose a differentiable NURBS module to integrate the NURBS representation of CAD models with deep learning methods. We mathematically define the derivatives of the NURBS curves or surfaces with respect to the input parameters. These derivatives are used to define an approximate Jacobian that can be used to perform the backward evaluation used while training deep learning models. We have implemented our NURBS module using GPU-accelerated algorithms and integrated it with PyTorch, a popular deep learning framework. We demonstrate the efficacy of our NURBS module in performing CAD operations such as curve or surface fitting and surface offsetting. Further, we show its utility in deep learning for unsupervised point cloud reconstruction. These examples show that our module performs better for certain deep learning frameworks and can be directly integrated with any deep-learning framework requiring NURBS.



قيم البحث

اقرأ أيضاً

In this paper we construct developable surface patches which are bounded by two rational or NURBS curves, though the resulting patch is not a rational or NURBS surface in general. This is accomplished by reparameterizing one of the boundary curves. T he reparameterization function is the solution of an algebraic equation. For the relevant case of cubic or cubic spline curves, this equation is quartic at most, quadratic if the curves are Bezier or splines and lie on parallel planes, and hence it may be solved either by standard analytical or numerical methods.
Consider a learning algorithm, which involves an internal call to an optimization routine such as a generalized eigenvalue problem, a cone programming problem or even sorting. Integrating such a method as a layer(s) within a trainable deep neural net work (DNN) in an efficient and numerically stable way is not straightforward -- for instance, only recently, strategies have emerged for eigendecomposition and differentiable sorting. We propose an efficient and differentiable solver for general linear programming problems which can be used in a plug and play manner within DNNs as a layer. Our development is inspired by a fascinating but not widely used link between dynamics of slime mold (physarum) and optimization schemes such as steepest descent. We describe our development and show the use of our solver in a video segmentation task and meta-learning for few-shot learning. We review the existing results and provide a technical analysis describing its applicability for our use cases. Our solver performs comparably with a customized projected gradient descent method on the first task and outperforms the differentiable CVXPY-SCS solver on the second task. Experiments show that our solver converges quickly without the need for a feasible initial point. Our proposal is easy to implement and can easily serve as layers whenever a learning procedure needs a fast approximate solution to a LP, within a larger network.
In this paper we provide a characterisation of rational developable surfaces in terms of the blossoms of the bounding curves and three rational functions $Lambda$, $M$, $ u$. Properties of developable surfaces are revised in this framework. In partic ular, a closed algebraic formula for the edge of regression of the surface is obtained in terms of the functions $Lambda$, $M$, $ u$, which are closely related to the ones that appear in the standard decomposition of the derivative of the parametrisation of one of the bounding curves in terms of the director vector of the rulings and its derivative. It is also shown that all rational developable surfaces can be described as the set of developable surfaces which can be constructed with a constant $Lambda$, $M$, $ u$ . The results are readily extended to rational spline developable surfaces.
The presence of missing values makes supervised learning much more challenging. Indeed, previous work has shown that even when the response is a linear function of the complete data, the optimal predictor is a complex function of the observed entries and the missingness indicator. As a result, the computational or sample complexities of consistent approaches depend on the number of missing patterns, which can be exponential in the number of dimensions. In this work, we derive the analytical form of the optimal predictor under a linearity assumption and various missing data mechanisms including Missing at Random (MAR) and self-masking (Missing Not At Random). Based on a Neumann-series approximation of the optimal predictor, we propose a new principled architecture, named NeuMiss networks. Their originality and strength come from the use of a new type of non-linearity: the multiplication by the missingness indicator. We provide an upper bound on the Bayes risk of NeuMiss networks, and show that they have good predictive accuracy with both a number of parameters and a computational complexity independent of the number of missing data patterns. As a result they scale well to problems with many features, and remain statistically efficient for medium-sized samples. Moreover, we show that, contrary to procedures using EM or imputation, they are robust to the missing data mechanism, including difficult MNAR settings such as self-masking.
74 - Shikun Liu , Zhe Lin , Yilin Wang 2020
We present a novel resizing module for neural networks: shape adaptor, a drop-in enhancement built on top of traditional resizing layers, such as pooling, bilinear sampling, and strided convolution. Whilst traditional resizing layers have fixed and d eterministic reshaping factors, our module allows for a learnable reshaping factor. Our implementation enables shape adaptors to be trained end-to-end without any additional supervision, through which network architectures can be optimised for each individual task, in a fully automated way. We performed experiments across seven image classification datasets, and results show that by simply using a set of our shape adaptors instead of the original resizing layers, performance increases consistently over human-designed networks, across all datasets. Additionally, we show the effectiveness of shape adaptors on two other applications: network compression and transfer learning. The source code is available at: https://github.com/lorenmt/shape-adaptor.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا