ﻻ يوجد ملخص باللغة العربية
Gauge field theory with rank-one field $T_{mu}$ is a quantum field theory that describes the interaction of elementary spin-1 particles, of which being massless to preserve gauge symmetry. In this paper, we give a generalized, extended study of abelian gauge field theory under successive rotor model in general $D$-dimensional flat spacetime for spin-1 particles in the context of higher order derivatives. We establish a theorem that $n$ rotor contributes to the $Box^n T^{mu}$ fields in the integration-by-parts formalism of the action. This corresponds to the transformation of gauge field $T^{mu} rightarrow Box^n T^{mu}$ and gauge field strength $G_{mu u}rightarrow Box^n G_{mu u} $ in the action. The $n=0$ case restores back to the standard abelian gauge field theory. The equation of motion and Noethers conserved current of the theory are also studied.
This paper is a follow-up work of the previous study of the generalized abelian gauge field theory under rotor model of order $n$ of higher order derivatives. We will study the quantization of this theory using path integral approach and find out the
A generalized Heisenberg-Euler formula is given for an Abelian gauge theory having vector as well as axial vector couplings to a massive fermion. So, the formula is applicable to a parity-violating theory. The gauge group is chosen to be $U(1)$. The
We present the derivation of conserved tensors associated to higher-order symmetries in the higher derivative Maxwell Abelian gauge field theories. In our model, the wave operator of the higher derived theory is a $n$-th order polynomial expressed in
We study a gauge/gravity model for the thermodynamics of a gauge theory with one running coupling. The gravity side contains an ansatz for the metric and a scalar field, on the field theory side one starts by giving an ansatz for the beta function de
The global conformal gauge is playing the crucial role in string theory providing the basis for quantization. Its existence for two-dimensional Lorentzian metric is known locally for a long time. We prove that if a Lorentzian metric is given on a pla