ﻻ يوجد ملخص باللغة العربية
We present an approach to studying and predicting the spatio-temporal progression of infectious diseases. We treat the problem by adopting a partial differential equation (PDE) version of the Susceptible, Infected, Recovered, Deceased (SIRD) compartmental model of epidemiology, which is achieved by replacing compartmental populations by their densities. Building on our recent work (Computational Mechanics, 66, 1177, 2020), we replace our earlier use of global polynomial basis functions with those having local support, as epitomized in the finite element method, for the spatial representation of the SIRD parameters. The time dependence is treated by inferring constant parameters over time intervals that coincide with the time step in semi-discrete numerical implementations. In combination, this amounts to a scheme of field inversion of the SIRD parameters over each time step. Applied to data over ten months of 2020 for the pandemic in the US state of Michigan and to all of Mexico, our system inference via field inversion infers spatio-temporally varying PDE SIRD parameters that replicate the progression of the pandemic with high accuracy. It also produces accurate predictions, when compared against data, for a three week period into 2021. Of note is the insight that is suggested on the spatio-temporal variation of infection, recovery and death rates, as well as patterns of the populations mobility revealed by diffusivities of the compartments.
We extend the classical SIR model of infectious disease spread to account for time dependence in the parameters, which also include diffusivities. The temporal dependence accounts for the changing characteristics of testing, quarantine and treatment
The new coronavirus known as COVID-19 is spread world-wide since December 2019. Without any vaccination or medicine, the means of controlling it are limited to quarantine and social distancing. Here we study the spatio-temporal propagation of the fir
Medical robots can play an important role in mitigating the spread of infectious diseases and delivering quality care to patients during the COVID-19 pandemic. Methods and procedures involving medical robots in the continuum of care, ranging from dis
In this paper, we apply statistical methods for functional data to explain the heterogeneity in the evolution of number of deaths of Covid-19 over different regions. We treat the cumulative daily number of deaths in a specific region as a curve (func
We established a Spatio-Temporal Neural Network, namely STNN, to forecast the spread of the coronavirus COVID-19 outbreak worldwide in 2020. The basic structure of STNN is similar to the Recurrent Neural Network (RNN) incorporating with not only temp