ﻻ يوجد ملخص باللغة العربية
This work considers a Poisson noise channel with an amplitude constraint. It is well-known that the capacity-achieving input distribution for this channel is discrete with finitely many points. We sharpen this result by introducing upper and lower bounds on the number of mass points. Concretely, an upper bound of order $mathsf{A} log^2(mathsf{A})$ and a lower bound of order $sqrt{mathsf{A}}$ are established where $mathsf{A}$ is the constraint on the input amplitude. In addition, along the way, we show several other properties of the capacity and capacity-achieving distribution. For example, it is shown that the capacity is equal to $ - log P_{Y^star}(0)$ where $P_{Y^star}$ is the optimal output distribution. Moreover, an upper bound on the values of the probability masses of the capacity-achieving distribution and a lower bound on the probability of the largest mass point are established. Furthermore, on the per-symbol basis, a nonvanishing lower bound on the probability of error for detecting the capacity-achieving distribution is established under the maximum a posteriori rule.
This paper studies an $n$-dimensional additive Gaussian noise channel with a peak-power-constrained input. It is well known that, in this case, when $n=1$ the capacity-achieving input distribution is discrete with finitely many mass points, and whe
In this work, novel upper and lower bounds for the capacity of channels with arbitrary constraints on the support of the channel input symbols are derived. As an immediate practical application, the case of multiple-input multiple-output channels wit
The capacity-achieving input distribution of the discrete-time, additive white Gaussian noise (AWGN) channel with an amplitude constraint is discrete and seems difficult to characterize explicitly. A dual capacity expression is used to derive analyti
We propose a new coding scheme using only one lattice that achieves the $frac{1}{2}log(1+SNR)$ capacity of the additive white Gaussian noise (AWGN) channel with lattice decoding, when the signal-to-noise ratio $SNR>e-1$. The scheme applies a discrete
The channel law for amplitude-modulated solitons transmitted through a nonlinear optical fibre with ideal distributed amplification and a receiver based on the nonlinear Fourier transform is a noncentral chi-distribution with $2n$ degrees of freedom,