ترغب بنشر مسار تعليمي؟ اضغط هنا

ELF-VC: Efficient Learned Flexible-Rate Video Coding

211   0   0.0 ( 0 )
 نشر من قبل Oren Rippel
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

While learned video codecs have demonstrated great promise, they have yet to achieve sufficient efficiency for practical deployment. In this work, we propose several novel ideas for learned video compression which allow for improved performance for the low-latency mode (I- and P-frames only) along with a considerable increase in computational efficiency. In this setting, for natural videos our approach compares favorably across the entire R-D curve under metrics PSNR, MS-SSIM and VMAF against all mainstream video standards (H.264, H.265, AV1) and all ML codecs. At the same time, our approach runs at least 5x faster and has fewer parameters than all ML codecs which report these figures. Our contributions include a flexible-rate framework allowing a single model to cover a large and dense range of bitrates, at a negligible increase in computation and parameter count; an efficient backbone optimized for ML-based codecs; and a novel in-loop flow prediction scheme which leverages prior information towards more efficient compression. We benchmark our method, which we call ELF-VC (Efficient, Learned and Flexible Video Coding) on popular video test sets UVG and MCL-JCV under metrics PSNR, MS-SSIM and VMAF. For example, on UVG under PSNR, it reduces the BD-rate by 44% against H.264, 26% against H.265, 15% against AV1, and 35% against the current best ML codec. At the same time, on an NVIDIA Titan V GPU our approach encodes/decodes VGA at 49/91 FPS, HD 720 at 19/35 FPS, and HD 1080 at 10/18 FPS.



قيم البحث

اقرأ أيضاً

We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames. Unlike prior learning-based approaches, we reduce complexity by not performing any form of explicit transformatio ns between frames and assume each frame is encoded with an independent state-of-the-art deep image compressor. We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs while being much faster and easier to implement. We then propose a novel internal learning extension on top of this architecture that brings an additional 10% bitrate savings without trading off decoding speed. Importantly, we show that our approach outperforms H.265 and other deep learning baselines in MS-SSIM on higher bitrate UVG video, and against all video codecs on lower framerates, while being thousands of times faster in decoding than deep models utilizing an autoregressive entropy model.
We present a new algorithm for video coding, learned end-to-end for the low-latency mode. In this setting, our approach outperforms all existing video codecs across nearly the entire bitrate range. To our knowledge, this is the first ML-based method to do so. We evaluate our approach on standard video compression test sets of varying resolutions, and benchmark against all mainstream commercial codecs, in the low-latency mode. On standard-definition videos, relative to our algorithm, HEVC/H.265, AVC/H.264 and VP9 typically produce codes up to 60% larger. On high-definition 1080p videos, H.265 and VP9 typically produce codes up to 20% larger, and H.264 up to 35% larger. Furthermore, our approach does not suffer from blocking artifacts and pixelation, and thus produces videos that are more visually pleasing. We propose two main contributions. The first is a novel architecture for video compression, which (1) generalizes motion estimation to perform any learned compensation beyond simple translations, (2) rather than strictly relying on previously transmitted reference frames, maintains a state of arbitrary information learned by the model, and (3) enables jointly compressing all transmitted signals (such as optical flow and residual). Secondly, we present a framework for ML-based spatial rate control: namely, a mechanism for assigning variable bitrates across space for each frame. This is a critical component for video coding, which to our knowledge had not been developed within a machine learning setting.
316 - Zhibo Chen , Jun Shi , Weiping Li 2019
In High Efficiency Video Coding (HEVC), excellent rate-distortion (RD) performance is achieved in part by having a flexible quadtree coding unit (CU) partition and a large number of intra-prediction modes. Such an excellent RD performance is achieved at the expense of much higher computational complexity. In this paper, we propose a learned fast HEVC intra coding (LFHI) framework taking into account the comprehensive factors of fast intra coding to reach an improved configurable tradeoff between coding performance and computational complexity. First, we design a low-complex shallow asymmetric-kernel CNN (AK-CNN) to efficiently extract the local directional texture features of each block for both fast CU partition and fast intra-mode decision. Second, we introduce the concept of the minimum number of RDO candidates (MNRC) into fast mode decision, which utilizes AK-CNN to predict the minimum number of best candidates for RDO calculation to further reduce the computation of intra-mode selection. Third, an evolution optimized threshold decision (EOTD) scheme is designed to achieve configurable complexity-efficiency tradeoffs. Finally, we propose an interpolation-based prediction scheme that allows for our framework to be generalized to all quantization parameters (QPs) without the need for training the network on each QP. The experimental results demonstrate that the LFHI framework has a high degree of parallelism and achieves a much better complexity-efficiency tradeoff, achieving up to 75.2% intra-mode encoding complexity reduction with negligible rate-distortion performance degradation, superior to the existing fast intra-coding schemes.
642 - Zhengfang Duanmu 2019
Rate-distortion (RD) theory is at the heart of lossy data compression. Here we aim to model the generalized RD (GRD) trade-off between the visual quality of a compressed video and its encoding profiles (e.g., bitrate and spatial resolution). We first define the theoretical functional space $mathcal{W}$ of the GRD function by analyzing its mathematical properties.We show that $mathcal{W}$ is a convex set in a Hilbert space, inspiring a computational model of the GRD function, and a method of estimating model parameters from sparse measurements. To demonstrate the feasibility of our idea, we collect a large-scale database of real-world GRD functions, which turn out to live in a low-dimensional subspace of $mathcal{W}$. Combining the GRD reconstruction framework and the learned low-dimensional space, we create a low-parameter eigen GRD method to accurately estimate the GRD function of a source video content from only a few queries. Experimental results on the database show that the learned GRD method significantly outperforms state-of-the-art empirical RD estimation methods both in accuracy and efficiency. Last, we demonstrate the promise of the proposed model in video codec comparison.
In this paper, we present a novel adversarial lossy video compression model. At extremely low bit-rates, standard video coding schemes suffer from unpleasant reconstruction artifacts such as blocking, ringing etc. Existing learned neural approaches t o video compression have achieved reasonable success on reducing the bit-rate for efficient transmission and reduce the impact of artifacts to an extent. However, they still tend to produce blurred results under extreme compression. In this paper, we present a deep adversarial learned video compression model that minimizes an auxiliary adversarial distortion objective. We find this adversarial objective to correlate better with human perceptual quality judgement relative to traditional quality metrics such as MS-SSIM and PSNR. Our experiments using a state-of-the-art learned video compression system demonstrate a reduction of perceptual artifacts and reconstruction of detail lost especially under extremely high compression.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا