ﻻ يوجد ملخص باللغة العربية
Various spacetime candidates for traversable wormholes, regular black holes, and `black-bounces are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate spacetimes belong to the mathematically simple class of spherically symmetric geometries; the majority are static, with a single dynamical (time-dependent) geometry explored. To the extent possible, the candidates are presented through the use of a global coordinate patch -- some of the prior literature (especially concerning traversable wormholes) has often proposed coordinate systems for desirable solutions to the Einstein equations requiring a multi-patch atlas. The most interesting cases include the so-called `exponential metric -- well-favoured by proponents of alternative theories of gravity but which actually has a standard classical interpretation, and the `black-bounce to traversable wormhole case -- where a metric is explored which represents either a traversable wormhole or a regular black hole, depending on the value of the newly introduced scalar parameter $a$. This notion of `black-bounce is defined as the case where the spherical boundary of a regular black hole forces one to travel towards a one-way traversable `bounce into a future reincarnation of our own universe. The metric of interest is then explored further in the context of a time-dependent spacetime, where the line element is rephrased with a Vaidya-like time-dependence imposed on the mass of the object, and in terms of outgoing-/ingoing Eddington-Finkelstein coordinates. Analysing these candidate spacetimes extends the pre-existing discussion concerning the viability of non-singular black hole solutions in the context of general relativity, as well as contributing to the dialogue on whether an arbitrarily advanced civilization would be able to construct a traversable wormhole.
Based on the recently introduced black-bounce spacetimes, we shall consider the construction of the related spherically symmetric thin-shell traversable wormholes within the context of standard general relativity. All of the really unusual physics is
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type
Using the covariant phase space formalism, we compute the conserved charges for a solution, describing an accelerating and electrically charged Reissner-Nordstrom black hole. The metric is regular provided that the acceleration is driven by an extern
A common argument suggests that non-singular geometries may not describe black holes observed in nature since they are unstable due to a mass-inflation effect. We analyze the dynamics associated with spherically symmetric, regular black holes taking
Standard models of regular black holes typically have asymptotically de Sitter regions at their cores. Herein we shall consider novel hollow regular black holes, those with asymptotically Minkowski cores. The reason for doing so is twofold: First, th