ﻻ يوجد ملخص باللغة العربية
The Edwards-Wilkinson (EW) growth of $1+1$ interface is considered in the background of the correlated random noise. We use random Coulomb potential as the background long-range correlated noise. A depinning transition is observed in a critical driving force $F_capprox 0.37$ in the vicinity of which the final velocity of the interface varies linearly with time. Our data collapse analysis for the velocity shows a crossover time $t^*$ at which the velocity is size independent. Based on a two-variable scaling analysis, we extract the exponents, which are different from all universality classes we are aware of. Especially noting that the dynamic and roughness exponents are $z_w=1.55pm 0.05$, and $alpha_w=1.05pm 0.05$ at the criticality, we conclude that the system is different from both EW and KPZ universality classes. Our analysis shows therefore that making the noise long-range-correlated, drives the system out of EW universality class. The simulations on the tilted lattice shows that the non-linearity term ($lambda$ term in the KPZ equations) goes to zero in the thermodynamic limit.
In this work, we present an effective discrete Edwards-Wilkinson equation aimed to describe the single-file diffusion process. The key physical properties of the system are captured defining an effective elasticity, which is proportional to the singl
We present simulations of the 1-dimensional Oslo rice pile model in which the critical height at each site is randomly reset after each toppling. We use the fact that the stationary state of this sandpile model is hyperuniform to reach system of size
Large scale numerical simulations are used to study the elastic dynamics of two-dimensional vortex lattices driven on a disordered medium in the case of weak disorder. We investigate the so-called elastic depinning transition by decreasing the drivin
Conserved directed-percolation (C-DP) and the depinning transition of a disordered elastic interface belong to the same universality class as has been proven very recently by Le Doussal and Wiese [Phys. Rev. Lett.~textbf{114}, 110601 (2015)] through
The problem of how many trajectories of a random walker in a potential are needed to reconstruct the values of this potential is studied. We show that this problem can be solved by calculating the probability of survival of an abstract random walker