ﻻ يوجد ملخص باللغة العربية
We demonstrate that the prethermal regime of periodically-driven, classical many-body systems can host non-equilibrium phases of matter. In particular, we show that there exists an effective Hamiltonian, which captures the dynamics of ensembles of classical trajectories, despite the breakdown of this description at the single trajectory level. In addition, we prove that the effective Hamiltonian can host emergent symmetries protected by the discrete time-translation symmetry of the drive. The spontaneous breaking of such an emergent symmetry leads to a sub-harmonic response, characteristic of time crystalline order, that survives to exponentially late times. To this end, we numerically demonstrate the existence of prethermal time crystals in both a one-dimensional, long-range interacting spin chain and a nearest-neighbor spin model on a two-dimensional square lattice.
The conventional framework for defining and understanding phases of matter requires thermodynamic equilibrium. Extensions to non-equilibrium systems have led to surprising insights into the nature of many-body thermalization and the discovery of nove
Periodically driven quantum systems host a range of non-equilibrium phenomena which are unrealizable at equilibrium. Discrete time-translational symmetry in a periodically driven many-body system can be spontaneously broken to form a discrete time cr
The idea of breaking time-translation symmetry has fascinated humanity at least since ancient proposals of the perpetuum mobile. Unlike the breaking of other symmetries, such as spatial translation in a crystal or spin rotation in a magnet, time tran
Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal is quantized to an
We generalize the classical shadow tomography scheme to a broad class of finite-depth or finite-time local unitary ensembles, known as locally scrambled quantum dynamics, where the unitary ensemble is invariant under local basis transformations. In t