ﻻ يوجد ملخص باللغة العربية
We present an algorithm for data-driven reachability analysis that estimates finite-horizon forward reachable sets for general nonlinear systems using level sets of a certain class of polynomials known as Christoffel functions. The level sets of Christoffel functions are known empirically to provide good approximations to the support of probability distributions: the algorithm uses this property for reachability analysis by solving a probabilistic relaxation of the reachable set computation problem. We also provide a guarantee that the output of the algorithm is an accurate reachable set approximation in a probabilistic sense, provided that a certain sample size is attained. We also investigate three numerical examples to demonstrate the algorithms capabilities, such as providing non-convex reachable set approximations and detecting holes in the reachable set.
This paper presents algorithms for performing data-driven reachability analysis under temporal logic side information. In certain scenarios, the data-driven reachable sets of a robot can be prohibitively conservative due to the inherent noise in the
Interval approaches for the reachability analysis of initial value problems for sets of classical ordinary differential equations have been investigated and implemented by many researchers during the last decades. However, there exist numerous applic
Reachable set computation is an important technique for the verification of safety properties of dynamical systems. In this paper, we investigate reachable set computation for discrete nonlinear systems based on parallelotope bundles. The algorithm r
In this paper we study a discrete-time SIS (susceptible-infected-susceptible) model, where the infection and healing parameters and the underlying network may change over time. We provide conditions for the model to be well-defined and study its stab
Ellipsoids are a common representation for reachability analysis because they are closed under affine maps and allow conservative approximation of Minkowski sums; this enables one to incorporate uncertainty and linearization error in a dynamical syst