ترغب بنشر مسار تعليمي؟ اضغط هنا

Another Proof of Borns Rule on Arbitrary Cauchy Surfaces

79   0   0.0 ( 0 )
 نشر من قبل Sascha Lill
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 2017, Lienert and Tumulka proved Borns rule on arbitrary Cauchy surfaces in Minkowski space-time assuming Borns rule and a corresponding collapse rule on horizontal surfaces relative to a fixed Lorentz frame, as well as a given unitary time evolution between any two Cauchy surfaces. Here, we prove Borns rule on arbitrary Cauchy surfaces from a different, but equally reasonable, set of assumptions. The conclusion is that if detectors are placed along any Cauchy surface $Sigma$, then the observed particle configuration on $Sigma$ has distribution $|Psi_Sigma|^2$, suitably understood. The main different assumption is that the Born and collapse rules hold on any spacelike hyperplane, i.e., at any time coordinate in any Lorentz frame. Heuristically, this follows if the dynamics of the detectors is Lorentz invariant. In addition, we assume, as did Lienert and Tumulka, that there is no interaction faster than light and that there is no propagation faster than light.



قيم البحث

اقرأ أيضاً

The approximated energy eigenvalues and the corresponding eigenfunctions of the spherical Woods-Saxon effective potential in $D$ dimensions are obtained within the new improved quantization rule for all $l$-states. The Pekeris approximation is used t o deal with the centrifugal term in the effective Woods-Saxon potential. The inter-dimensional degeneracies for various orbital quantum number $l$ and dimensional space $D$ are studied. The solutions for the Hulth{e}n potential, the three-dimensional (D=3), the $% s$-wave ($l=0$) and the cases are briefly discussed.
It was shown recently that Birkhoffs theorem for doubly stochastic matrices can be extended to unitary matrices with equal line sums whenever the dimension of the matrices is prime. We prove a generalization of the Birkhoff theorem for unitary matrices with equal line sums for arbitrary dimension.
We give a simple direct proof of the Jamiolkowski criterion to check whether a linear map between matrix algebras is completely positive or not. This proof is more accesible for physicists than others found in the literature and provides a systematic method to give any set of Kraus matrices of its Kraus decomposition.
138 - E. Langmann , G. Lindblad 2008
We discuss the decay of unstable states into a quasicontinuum using models of the effective Hamiltonian type. The goal is to show that exponential decay and the golden rule are exact in a suitable scaling limit, and that there is an associated renorm alization group (RG) with these properties as a fixed point. The method is inspired by a limit theorem for infinitely divisible distributions in probability theory, where there is a RG with a Cauchy distribution, i.e. a Lorentz line shape, as a fixed point. Our method of solving for the spectrum is well known; it does not involve a perturbation expansion in the interaction, and needs no assumption of a weak interaction. We use random matrices for the interaction, and show that the ensemble fluctuations vanish in the scaling limit. Thus the limit is the same for every model in the ensemble with probability one.
We introduce a new class of two(multi)-matrix models of positive Hermitean matrices coupled in a chain; the coupling is related to the Cauchy kernel and differs from the exponential coupling more commonly used in similar models. The correlation funct ions are expressed entirely in terms of certain biorthogonal polynomials and solutions of appropriate Riemann-Hilbert problems, thus paving the way to a steepest descent analysis and universality results. The interpretation of the formal expansion of the partition function in terms of multicolored ribbon-graphs is provided and a connection to the O(1) model. A steepest descent analysis of the partition function reveals that the model is related to a trigonal curve (three-sheeted covering of the plane) much in the same way as the Hermitean matrix model is related to a hyperelliptic curve.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا