We study the behavior of phase transitions for the four-dimensional charged Taub-NUT-AdS spacetime with the Newman-Unti-Tamburino (NUT) parameter interpreted as the thermodynamic multihair in the extended thermodynamic phase space, and mainly focus on the effects of the NUT parameter on the phase transitions. We find that there is an upper bound on the value of the NUT parameter beyond which the corresponding physical inflection point or critical point will not exist, and the thermodynamic trihair interpretation of the NUT parameter would admit a little larger upper bound than the thermodynamic bihair interpretation. Moreover, as long as the NUT parameter is vanishingly small, the analogy to the van der Waals liquid/gas phase transition is valid irrespective of the multihair characteristics of the NUT parameter. However, as the NUT parameter increases to be comparable to the electric charge, such analogy to the van der Waals system will be broken, and the corresponding inflection point is not a thermodynamic critical point any more. For a large NUT parameter, there are frequent occurrences of the zeroth order phase transition in the case of the thermodynamic bihair interpretation, while only the first order phase transition happens in the case of the thermodynamic trihair interpretation.