ﻻ يوجد ملخص باللغة العربية
The recent development of dynamic single-electron sources makes it possible to observe and manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we investigate multi-particle effects in an electronic Mach-Zehnder interferometer driven by dynamic voltage pulses. To this end, we employ a Floquet scattering formalism to evaluate the interference current and the visibility in the outputs of the interferometer. An injected multi-particle state can be described by its first-order correlation function, which we decompose into a sum of elementary correlation functions that each represent a single particle. Each particle in the pulse contributes independently to the interference current, while the visibility (determined by the maximal interference current) exhibits a Fraunhofer-like diffraction pattern caused by the multi-particle interference between different particles in the pulse. For a sequence of multi-particle pulses, the visibility resembles the diffraction pattern from a grid, with the role of the grid and the spacing between the slits being played by the pulses and the time delay between them. Our findings may be observed in future experiments by injecting multi-particle pulses into an electronic Mach-Zehnder interferometer.
We develop a theoretical description of a Mach-Zehnder interferometer built from integer quantum Hall edge states, with an emphasis on how electron-electron interactions produce decoherence. We calculate the visibility of interference fringes and noi
We performed the conductance and the shot noise measurements in an electronic Mach-Zehnder interferometer. The visibility of the interference is investigated as a function of the electron temperature that is derived from the thermal noise of the inte
We present an original statistical method to measure the visibility of interferences in an electronic Mach-Zehnder interferometer in the presence of low frequency fluctuations. The visibility presents a single side lobe structure shown to result from
We report the observation of an unpredicted behavior of interfering 2D electrons in the integer quantum Hall effect (IQHE) regime via a utilization of an electronic analog of the well-known Mach-Zehnder interferometer (MZI). The beauty of this experi
We study theoretically electronic Mach-Zehnder interferometers built from integer quantum Hall edge states, showing that the results of recent experiments can be understood in terms of multiparticle interference effects. These experiments probe the v