ﻻ يوجد ملخص باللغة العربية
When the quasi-phase matching (QPM) parameters of the $chi^{(2)}$ nonlinear crystal rotate along a closed path, geometric phase will be generated in the signal and idler waves that participate in the nonlinear frequency conversion. In this paper, we study two rotation schemes, full-wedge rotation, and half-wedge rotation, of the QPM parameters in the process of fully nonlinear three-wave mixing. These two schemes can effectively suppress the uncertainty in creating the geometric phase in the nonlinear frequency conversion process when the intensity of the pump is depleted. The finding of this paper provides an avenue toward constant control of the geometric phase in nonlinear optics applications and quantum information processing.
The force of electromagnetic radiation on a dielectric medium may be derived by a direct application of the Lorentz law of classical electrodynamics. While the lights electric field acts upon the (induced) bound charges in the medium, its magnetic fi
The shaping of group velocity dispersion in microresonators is an important component in the generation of wideband optical frequency combs. Small resonators - with tight bending radii - offer the large free-spectral range desirable for wide comb for
We define wedge-lifted codes, a variant of lifted codes, and we study their locality properties. We show that (taking the trace of) wedge-lifted codes yields binary codes with the $t$-disjoint repair property ($t$-DRGP). When $t = N^{1/2d}$, where $N
A robust wedge setup is proposed to unambiguously demonstrate negative refraction for negative index metamaterials. We applied our setup to several optical metamaterials from the literature and distinctly observed the phenomena of negative refraction
A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are dist