ﻻ يوجد ملخص باللغة العربية
We present SNIascore, a deep-learning based method for spectroscopic classification of thermonuclear supernovae (SNe Ia) based on very low-resolution (R $sim100$) data. The goal of SNIascore is fully automated classification of SNe Ia with a very low false-positive rate (FPR) so that human intervention can be greatly reduced in large-scale SN classification efforts, such as that undertaken by the public Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS). We utilize a recurrent neural network (RNN) architecture with a combination of bidirectional long short-term memory and gated recurrent unit layers. SNIascore achieves a $<0.6%$ FPR while classifying up to $90%$ of the low-resolution SN Ia spectra obtained by the BTS. SNIascore simultaneously performs binary classification and predicts the redshifts of secure SNe Ia via regression (with a typical uncertainty of $<0.005$ in the range from $z = 0.01$ to $z = 0.12$). For the magnitude-limited ZTF BTS survey ($approx70%$ SNe Ia), deploying SNIascore reduces the amount of spectra in need of human classification or confirmation by $approx60%$. Furthermore, SNIascore allows SN Ia classifications to be automatically announced in real-time to the public immediately following a finished observation during the night.
Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscop
Recent rapid development of deep learning algorithms, which can implicitly capture structures in high-dimensional data, opens a new chapter in astronomical data analysis. We report here a new implementation of deep learning techniques for X-ray analy
The full third Gaia data release will provide the calibrated spectra obtained with the blue and red Gaia slit-less spectrophotometers. The main challenge when facing Gaia spectral calibration is that no lamp spectra or flat fields are available durin
We demonstrate the application of a convolutional neural network to the gravitational wave signals from core collapse supernovae. Using simulated time series of gravitational wave detectors, we show that based on the explosion mechanisms, a convoluti
The advancement of technology has resulted in a rapid increase in supernova (SN) discoveries. The Subaru/Hyper Suprime-Cam (HSC) transient survey, conducted from fall 2016 through spring 2017, yielded 1824 SN candidates. This gave rise to the need fo