ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalar-Tensor-Vector modified gravity in light of the Planck 2018 data

113   0   0.0 ( 0 )
 نشر من قبل Viktor T. Toth
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent data release by the Planck satellite collaboration presents a renewed challenge for modified theories of gravitation. Such theories must be capable of reproducing the observed angular power spectrum of the cosmic microwave background radiation. For modified theories of gravity, an added challenge lies with the fact that standard computational tools do not readily accommodate the features of a theory with a variable gravitational coupling coefficient. An alternative is to use less accurate but more easily modifiable semianalytical approximations to reproduce at least the qualitative features of the angular power spectrum. We extend a calculation that was used previously to demonstrate compatibility between the Scalar-Tensor-Vector-Gravity (STVG) theory, also known by the acronym MOG, and data from the Wilkinson Microwave Anisotropy Probe (WMAP) to show consistency between the theory and the newly released Planck 2018 data. We find that within the limits of this approximation, the theory accurately reproduces the features of the angular power spectrum.



قيم البحث

اقرأ أيضاً

A gravity theory called scalar-tensor-vector gravity (STVG) has been recently developed and succeeded in solar system, astrophysical and cosmological scales without dark matter [J. W. Moffat, J. Cosmol. Astropart. Phys. 03, 004 (2006)]. However, two assumptions have been used: (i) $B(r)=A^{-1}(r)$, where $B(r)$ and $A(r)$ are $g_{00}$ and $g_{rr}$ in the Schwarzschild coordinates (static and spherically symmetric); (ii) scalar field $G=Const.$ in the solar system. These two assumptions actually imply that the standard parametrized post-Newtonian parameter $gamma=1$. In this paper, we relax these two assumptions and study STVG further by using the post-Newtonian (PN) approximation approach. With abandoning the assumptions, we find $gamma eq1$ in general cases of STVG. Then, a version of modified STVG (MSTVG) is proposed through introducing a coupling function of scalar field G: $theta(G)$. We have derived the metric and equations of motion (EOM) in 1PN for general matter without specific equation of state and $N$ point masses firstly. Subsequently, the secular periastron precession $dot{omega}$ of binary pulsars in harmonic coordinates is given. After discussing two PPN parameters ($gamma$ and $beta$) and two Yukawa parameters ($alpha$ and $lambda$), we use $dot{omega}$ of four binary pulsars data (PSR B1913+16, PSR B1534+12, PSR J0737-3039 and PSR B2127+11C) to constrain the Yukawa parameters for MSTVG: $lambda=(3.97pm0.01)times10^{8}$m and $alpha=(2.40pm0.02)times10^{-8}$ if we fix $|2gamma-beta-1|=0$.
In this paper, we study the properties of gravitational waves in the scalar-tensor-vector gravity theory. The polarizations of the gravitational waves are investigated by analyzing the relative motion of the test particles. It is found that the inter action between the matter and vector field in the theory leads to two additional transverse polarization modes. By making use of the polarization content, the stress-energy pseudo-tensor is calculated by employing the perturbed equation method. Besides, the relaxed field equation for the modified gravity in question is derived by using the Landau-Lifshitz formalism suitable to systems with non-negligible self-gravity.
J. W. Moffat and V. T. Toth submitted recently a comment (arXiv:0903.5291) on our latest paper Modified scalar-tensor-vector gravity theory and the constraint on its parameters [Deng, et al., Phys. Rev. D 79, 044014 (2009); arXiv:0901.3730 ]. We repl y to each of their comments and justify our work and conclusions. Especially, their general STVG (MOG) theory has to be modified to fit the modern precision experiments.
We study the cosmology on the Friedmann-Lemaitre-Robertson-Walker background in scalar-vector-tensor theories with a broken $U(1)$ gauge symmetry. For parity-invariant interactions arising in scalar-vector-tensor theories with second-order equations of motion, we derive conditions for the absence of ghosts and Laplacian instabilities associated with tensor, vector, and scalar perturbations at linear order. This general result is applied to the computation of the primordial tensor power spectrum generated during inflation as well as to the speed of gravity relevant to dark energy. We also construct a concrete inflationary model in which a temporal vector component $A_0$ contributes to the dynamics of cosmic acceleration besides a scalar field $phi$ through their kinetic mixings. In this model, we show that all the stability conditions of perturbations can be consistently satisfied during inflation and subsequent reheating.
73 - Valerio Faraoni 2021
Previously, the Einstein equation has been described as an equation of state, general relativity as the equilibrium state of gravity, and $f({cal R})$ gravity as a non-equilibrium one. We apply Eckarts first order thermodynamics to the effective diss ipative fluid describing scalar-tensor gravity. Surprisingly, we obtain simple expressions for the effective heat flux, temperature of gravity, shear and bulk viscosity, and entropy density, plus a generalized Fourier law in a consistent Eckart thermodynamical picture. Well-defined notions of temperature and approach to equilibrium, missing in the current thermodynamics of spacetime scenarios, naturally emerge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا