ﻻ يوجد ملخص باللغة العربية
Motivated by a recent experiment, we study the dynamics of bosons in a disordered optical lattice, interacting with a variably sized bath of disorder free atoms. As the number of particles in the bath is increased, there is a transition between localized and ergodic behavior, which are characterized by the long-time behavior of an initial density wave. We model the dynamics with a stochastic mean field theory, reproducing the central observations of the experiment. A key conclusion from our study is that particle loss plays an important role.
Dissipation is introduced to a strongly interacting ultracold bosonic gas in the Mott-insulator regime of a 3D spin-dependent optical lattice. A weakly interacting superfluid comprised of atoms in a state that does not experience the lattice potentia
We discuss the superfluid properties of a Bose-Einstein condensed gas with spin-orbit coupling, recently realized in experiments. We find a finite normal fluid density $rho_n$ at zero temperature which turns out to be a function of the Raman coupling
A Bose condensate subject to a periodic modulation of the two-body interactions was recently observed to emit matter-wave jets resembling fireworks [Nature 551, 356(2017)]. In this paper, combining experiment with numerical simulation, we demonstrate
Synthetic spin-orbit (SO) coupling, an important ingredient for quantum simulation of many exotic condensed matter physics, has recently attracted considerable attention. The static and dynamic properties of a SO coupled Bose-Einstein condensate (BEC
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within sa