ﻻ يوجد ملخص باللغة العربية
Two dimensional angular correlation of the positron annihilation radiation (2D-ACAR) spectra are measured for $mathrm{LaB}_6$ along high symmetry directions and compared with first principle calculations based on density functional theory (DFT). This allows the modeling of the Fermi surface in terms of ellipsoid electron pockets centered at $X$-points elongated along the $Sigma$ axis (${Gamma-M}$ direction). The obtained structure is in agreement with quantum oscillation measurements and previous band structure calculations. For the isostructural topologically not-trivial $mathrm{SmB}_6$ the similar ellipsoids are connected through necks that have significantly smaller radii in the case of $mathrm{LaB}_6$. A theoretical analysis of the 2D-ACAR spectra is also performed for $mathrm{CeB}_6$ including the on-site repulsion $U$ correction to the local-density approximation (LDA+$U$) of the DFT. The similarities of 2D-ACAR spectra and the Fermi-surface projections of these two compounds allow to infer that both $mathrm{LaB}_6$ and $mathrm{CeB}_6$ are topologically trivial correlated metals.
In rare-earth cage compounds, the guest 4f ion cannot be considered as fixed at the centre of its cage. As result of the electronic degeneracy of the 4f shell, single-ion or collective mechanisms can redistribute the ion inside the cage, which can be
Strong electron correlations in rare earth hexaborides can give rise to a variety of interesting phenomena like ferromagnetism, Kondo hybridization, mixed valence, superconductivity and possibly topological characteristics. The theoretical prediction
Using Fourier-transform infrared spectroscopy and optical ellipsometry, room temperature spectra of complex conductivity of single crystals of hexaborides Gd$_x$La$_{1-x}$B$_6$, $x$(Gd)$=0$, 0.01, 0.1, 0.78, 1 are determined in the frequency range 30
Two-dimensional angular correlation of annihilation radiation (2D-ACAR) and Compton scattering are both powerful techniques to investigate the bulk electronic structure of crystalline solids through the momentum density of the electrons. Here we appl
We have studied the absorption spectra of x-ray irradiation-induced Ce2+ and Pr2+ ions in crystals of alkaline-earth fluorides. We have calculated absorption spectra of divalent praseodymium ions in SrF2 crystals doped with Pr2+ for the first time. T