ﻻ يوجد ملخص باللغة العربية
Magnetic topological semimetals, a novel state of quantum matter with nontrivial band topology, have emerged as a new frontier in physics and materials science. An external stimulus like temperature or magnetic field could be expected to alter their spin states and thus the Fermi surface anisotropies and topological features. Here, we perform the angular magnetoresistance measurements and electronic band structure calculations to reveal the evolution of HoSbs Fermi surface anisotropies and topological nature in different magnetic states. The angular magnetoresistance results manifest that its Fermi surface anisotropy is robust in the paramagnetic state but is significantly modulated in the antiferromagnetic and ferromagnetic states. More interestingly, a transition from the trivial (nontrivial) to nontrivial (trivial) topological electronic phase is observed when HoSb undergoes a magnetic transition from the paramagnetic (antiferromagnetic) to antiferromagnetic (ferromagnetic) state induced by temperature (applied magnetic field). Our studying suggests that HoSb provides an archetype platform to study the correlations between magnetism and topological states of matter.
Topological Weyl semimetals (TWSs) are exotic crystals possessing emergent relativistic Weyl fermions connected by unique surface Fermi-arcs (SFAs) in their electronic structures. To realize the TWS state, certain symmetry (such as the inversion or t
We report the pressure (p_max = 1.5 GPa) evolution of the crystal structure of the Weyl semimetal T_d-MoTe_2 by means of neutron diffraction experiments. We find that the fundamental non-centrosymmetric structure T_d is fully suppressed and transform
We present experimental evidence of an intriguing phase transition between distinct topological states in the type-II Weyl semimetal MoTe2. We observe anomalies in the Raman phonon frequencies and linewidths as well as electronic quasielastic peaks a
The layered WHM - type (W=Zr/Hf/La, H=Si/Ge/Sn/Sb, M=S/Se/Te) materials represent a large family of topological semimetals, which provides an excellent platform to study the evolution of topological semimetal state with the fine tuning of spin-orbit
Three-dimensional (3D) topological Dirac semimetal, when thinned down to 2D few layers, is expected to possess gapped Dirac nodes via quantum confinement effect and concomitantly display the intriguing quantum spin Hall (QSH) insulator phase. However