ﻻ يوجد ملخص باللغة العربية
The Compressed Baryonic Matter~(CBM) experiment in the upcoming Facility for Antiproton and Ion Research~(FAIR), designed to take data in nuclear collisions at very high interaction rates of up to 10 MHz, will employ a free-streaming data acquisition with self-triggered readout electronics, without any hardware trigger. A simulation framework with a realistic digitization of the detectors in the muon chamber (MuCh) subsystem in CBM has been developed to provide a realistic simulation of the time-stamped data stream. In this article, we describe the implementation of the free-streaming detector simulation and the basic data related effects on the detector with respect to the interaction rate.
In this paper we present the R&D activity on a new GEM-based TPC prototype for AMADEUS, a new experimental proposal at the DA{Phi}NE {Phi}-factory at the Laboratori Nazionali di Frascati (INFN), aiming to perform measurements of the low-energy negati
The stability of triple GEM detector setups in an environment of high energetic showers is studied. To this end the spark probability in a shower environment is compared to the spark probability in a pion beam.
A large number of high-energy and heavy-ion experiments successfully used Time Projection Chamber (TPC) as central tracker and particle identification detector. However, the performance requirements on TPC for new high-rate particle experiments great
Characteristics of triple GEM detector have been studied systematically. The variation of the effective gain and energy resolution of GEM with variation of the applied voltage has been measured with Fe55 X-ray source for different gas mixtures and wi
We propose a new fixed latency scheme for Xilinx gigabit transceivers that will be used in the upgrade of the ATLAS forward muon spectrometer at the Large Hadron Collider. The fixed latency scheme is implemented in a 4.8 Gbps link between a frontend