ﻻ يوجد ملخص باللغة العربية
Multi-dimensional data exploration is a classic research topic in visualization. Most existing approaches are designed for identifying record patterns in dimensional space or subspace. In this paper, we propose a visual analytics approach to exploring subset patterns. The core of the approach is a subset embedding network (SEN) that represents a group of subsets as uniformly-formatted embeddings. We implement the SEN as multiple subnets with separate loss functions. The design enables to handle arbitrary subsets and capture the similarity of subsets on single features, thus achieving accurate pattern exploration, which in most cases is searching for subsets having similar values on few features. Moreover, each subnet is a fully-connected neural network with one hidden layer. The simple structure brings high training efficiency. We integrate the SEN into a visualization system that achieves a 3-step workflow. Specifically, analysts (1) partition the given dataset into subsets, (2) select portions in a projected latent space created using the SEN, and (3) determine the existence of patterns within selected subsets. Generally, the system combines visualizations, interactions, automatic methods, and quantitative measures to balance the exploration flexibility and operation efficiency, and improve the interpretability and faithfulness of the identified patterns. Case studies and quantitative experiments on multiple open datasets demonstrate the general applicability and effectiveness of our approach.
Multiple-view visualization (MV) has been heavily used in visual analysis tools for sensemaking of data in various domains (e.g., bioinformatics, cybersecurity and text analytics). One common task of visual analysis with multiple views is to relate d
Virtual Reality (VR) enables users to collaborate while exploring scenarios not realizable in the physical world. We propose CollabVR, a distributed multi-user collaboration environment, to explore how digital content improves expression and understa
spectral-based subspace learning is a common data preprocessing step in many machine learning pipelines. The main aim is to learn a meaningful low dimensional embedding of the data. However, most subspace learning methods do not take into considerati
Finding valuable training data points for deep neural networks has been a core research challenge with many applications. In recent years, various techniques for calculating the value of individual training datapoints have been proposed for explainin
Deep generative models, such as Variational Autoencoders (VAEs), have been employed widely in computational creativity research. However, such models discourage out-of-distribution generation to avoid spurious sample generation, limiting their creati