ﻻ يوجد ملخص باللغة العربية
Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg (Chiou and Huang 2021) offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events, possibly with the presence of an informative terminal event. The regression framework is a general scale-change model which encompasses the popular Cox-type model, the accelerated rate model, and the accelerated mean model as special cases. Informative censoring is accommodated through a subject-specific frailty without no need for parametric specification. Different regression models are allowed for the recurrent event process and the terminal event. Also included are visualization and simulation tools.
The R package quantreg.nonpar implements nonparametric quantile regression methods to estimate and make inference on partially linear quantile models. quantreg.nonpar obtains point estimates of the conditional quantile function and its derivatives ba
This paper is dedicated to the R package FMM which implements a novel approach to describe rhythmic patterns in oscillatory signals. The frequency modulated Mobius (FMM) model is defined as a parametric signal plus a gaussian noise, where the signal
Pooled testing (also known as group testing), where diagnostic tests are performed on pooled samples, has broad applications in the surveillance of diseases in animals and humans. An increasingly common use case is molecular xenomonitoring (MX), wher
We introduce and illustrate through numerical examples the R package texttt{SIHR} which handles the statistical inference for (1) linear and quadratic functionals in the high-dimensional linear regression and (2) linear functional in the high-dimensi
The R-package REPPlab is designed to explore multivariate data sets using one-dimensional unsupervised projection pursuit. It is useful in practice as a preprocessing step to find clusters or as an outlier detection tool for multivariate numerical da