ترغب بنشر مسار تعليمي؟ اضغط هنا

Genetic Constrained Graph Variational Autoencoder for COVID-19 Drug Discovery

109   0   0.0 ( 0 )
 نشر من قبل Tianyue Cheng
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In the past several months, COVID-19 has spread over the globe and caused severe damage to the people and the society. In the context of this severe situation, an effective drug discovery method to generate potential drugs is extremely meaningful. In this paper, we provide a methodology of discovering potential drugs for the treatment of Severe Acute Respiratory Syndrome Corona-Virus 2 (commonly known as SARS-CoV-2). We proposed a new model called Genetic Constrained Graph Variational Autoencoder (GCGVAE) to solve this problem. We trained our model based on the data of various viruses protein structure, including that of the SARS, HIV, Hep3, and MERS, and used it to generate possible drugs for SARS-CoV-2. Several optimization algorithms, including valency masking and genetic algorithm, are deployed to fine tune our model. According to the simulation, our generated molecules have great effectiveness in inhibiting SARS-CoV-2. We quantitatively calculated the scores of our generated molecules and compared it with the scores of existing drugs, and the result shows our generated molecules scores much better than those existing drugs. Moreover, our model can be also applied to generate effective drugs for treating other viruses given their protein structure, which could be used to generate drugs for future viruses.



قيم البحث

اقرأ أيضاً

Gaining more comprehensive knowledge about drug-drug interactions (DDIs) is one of the most important tasks in drug development and medical practice. Recently graph neural networks have achieved great success in this task by modeling drugs as nodes a nd drug-drug interactions as links and casting DDI predictions as link prediction problems. However, correlations between link labels (e.g., DDI types) were rarely considered in existing works. We propose the graph energy neural network (GENN) to explicitly model link type correlations. We formulate the DDI prediction task as a structure prediction problem and introduce a new energy-based model where the energy function is defined by graph neural networks. Experiments on two real-world DDI datasets demonstrated that GENN is superior to many baselines without consideration of link type correlations and achieved $13.77%$ and $5.01%$ PR-AUC improvement on the two datasets, respectively. We also present a case study in which mname can better capture meaningful DDI correlations compared with baseline models.
Cancer is a primary cause of human death, but discovering drugs and tailoring cancer therapies are expensive and time-consuming. We seek to facilitate the discovery of new drugs and treatment strategies for cancer using variational autoencoders (VAEs ) and multi-layer perceptrons (MLPs) to predict anti-cancer drug responses. Our model takes as input gene expression data of cancer cell lines and anti-cancer drug molecular data and encodes these data with our {sc {GeneVae}} model, which is an ordinary VAE model, and a rectified junction tree variational autoencoder ({sc JTVae}) model, respectively. A multi-layer perceptron processes these encoded features to produce a final prediction. Our tests show our system attains a high average coefficient of determination ($R^{2} = 0.83$) in predicting drug responses for breast cancer cell lines and an average $R^{2} = 0.845$ for pan-cancer cell lines. Additionally, we show that our model can generates effective drug compounds not previously used for specific cancer cell lines.
90 - Giulia Fiscon 2020
The novelty of new human coronavirus COVID-19/SARS-CoV-2 and the lack of effective drugs and vaccines gave rise to a wide variety of strategies employed to fight this worldwide pandemic. Many of these strategies rely on the repositioning of existing drugs that could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we presented a new network-based algorithm for drug repositioning, called SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk), which predicts drug-disease associations by quantifying the interplay between the drug targets and the disease-specific proteins in the human interactome via a novel network-based similarity measure that prioritizes associations between drugs and diseases locating in the same network neighborhoods. Specifically, we applied SAveRUNNER on a panel of 14 selected diseases with a consolidated knowledge about their disease-causing genes and that have been found to be related to COVID-19 for genetic similarity, comorbidity, or for their association to drugs tentatively repurposed to treat COVID-19. Focusing specifically on SARS subnetwork, we identified 282 repurposable drugs, including some the most rumored off-label drugs for COVID-19 treatments, as well as a new combination therapy of 5 drugs, actually used in clinical practice. Furthermore, to maximize the efficiency of putative downstream validation experiments, we prioritized 24 potential anti-SARS-CoV repurposable drugs based on their network-based similarity values. These top-ranked drugs include ACE-inhibitors, monoclonal antibodies, and thrombin inhibitors. Finally, our findings were in-silico validated by performing a gene set enrichment analysis, which confirmed that most of the network-predicted repurposable drugs may have a potential treatment effect against human coronavirus infections.
Amid the pandemic of 2019 novel coronavirus disease (COVID-19) infected by SARS-CoV-2, a vast amount of drug research for prevention and treatment has been quickly conducted, but these efforts have been unsuccessful thus far. Our objective is to prio ritize repurposable drugs using a drug repurposing pipeline that systematically integrates multiple SARS-CoV-2 and drug interactions, deep graph neural networks, and in-vitro/population-based validations. We first collected all the available drugs (n= 3,635) involved in COVID-19 patient treatment through CTDbase. We built a SARS-CoV-2 knowledge graph based on the interactions among virus baits, host genes, pathways, drugs, and phenotypes. A deep graph neural network approach was used to derive the candidate representation based on the biological interactions. We prioritized the candidate drugs using clinical trial history, and then validated them with their genetic profiles, in vitro experimental efficacy, and electronic health records. We highlight the top 22 drugs including Azithromycin, Atorvastatin, Aspirin, Acetaminophen, and Albuterol. We further pinpointed drug combinations that may synergistically target COVID-19. In summary, we demonstrated that the integration of extensive interactions, deep neural networks, and rigorous validation can facilitate the rapid identification of candidate drugs for COVID-19 treatment.
Design of new drug compounds with target properties is a key area of research in generative modeling. We present a small drug molecule design pipeline based on graph-generative models and a comparison study of two state-of-the-art graph generative mo dels for designing COVID-19 targeted drug candidates: 1) a variational autoencoder-based approach (VAE) that uses prior knowledge of molecules that have been shown to be effective for earlier coronavirus treatments and 2) a deep Q-learning method (DQN) that generates optimized molecules without any proximity constraints. We evaluate the novelty of the automated molecule generation approaches by validating the candidate molecules with drug-protein binding affinity models. The VAE method produced two novel molecules with similar structures to the antiretroviral protease inhibitor Indinavir that show potential binding affinity for the SARS-CoV-2 protein target 3-chymotrypsin-like protease (3CL-protease).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا