ترغب بنشر مسار تعليمي؟ اضغط هنا

Interstitialcy-based reordering kinetics of Ni$_3$Al precipitates in irradiated Ni-based super alloys

112   0   0.0 ( 0 )
 نشر من قبل Keyvan Ferasat
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron irradiation tends to promote disorder in ordered alloys through the action of the thermal spikes that it generates, while simultaneously introducing point defects and defect clusters. As they migrate, these point defects will promote reordering of the alloys, acting against irradiation-induced disordering. In this study, classical molecular dynamics and a highly parallel accelerated sampling method are used to study the reordering kinetics of Ni$_3$Al under the diffusion of self-interstitial atoms (SIA). By monitoring the order parameter and potential energy from atomistic simulations, we show that the SIA acts as a reordering agent in Ni$_3$Al. A mean-field rate theory model of the interstitialcy-based reordering kinetics is introduced, which reproduces simulation data and predicts reordering at temperatures as low as 500 K.



قيم البحث

اقرأ أيضاً

132 - David L. Olmsted 2004
Dislocation velocities and mobilities are studied by Molecular Dynamics simulations for edge and screw dislocations in pure aluminum and nickel, and edge dislocations in Al-2.5%Mg and Al-5.0%Mg random substitutional alloys using EAM potentials. In th e pure materials, the velocities of all dislocations are close to linear with the ratio of (applied stress)/(temperature) at low velocities, consistent with phonon drag models and quantitative agreement with experiment is obtained for the mobility in Al. At higher velocities, different behavior is observed. The edge dislocation velocity remains dependent solely on (applied stress)/(temperature) up to approximately 1.0 MPa/K, and approaches a plateau velocity that is lower than the smallest forbidden speed predicted by continuum models. In contrast, above a velocity around half of the smallest continuum wave speed, the screw dislocation damping has a contribution dependent solely on stress with a functional form close to that predicted by a radiation damping model of Eshelby. At the highest applied stresses, there are several regimes of nearly constant (transonic or supersonic) velocity separated by velocity gaps in the vicinity of forbidden velocities; various modes of dislocation disintegration and destabilization were also encountered in this regime. In the alloy systems, there is a temperature- and concentration-dependent pinning regime where the velocity drops sharply below the pure metal velocity. Above the pinning regime but at moderate stresses, the velocity is again linear in (applied stress)/(temperature) but with a lower mobility than in the pure metal.
Laser ablation of Al-Ni alloys and Al films on Ni substrates has been studied by molecular dynamics simulations (MD). The MD method was combined with a two-temperature model to describe the interaction between the laser beam, the electrons and the at oms. The challenge for alloys and mixtures is to find the electronic parameters: electron heat conductivity, electron heat capacity and electron-phonon coupling parameter. The challenge for layered systems is to run simulations of an inhomogeneous system which requires modification of the simulation code. Ablation and laser-induced melting was studied for several Al-Ni compounds. At low fluences above the threshold ordinary ablation behavior occurred while at high fluences the ablation mechanism changed in Al$_3$Ni and AlNi$_3$ from phase explosion to vaporization. Al films of various thicknesses on a Ni substrate have also been simulated. Above threshold, 8 nm Al films are ablated as a whole while 24 nm Al films are only partially removed. Below threshold, alloying with a mixture gradient has been observed in the thin layer system.
Inelastic and elastic neutron scattering have been used to study a single crystal of the Ni$_{54}$Mn$_{23}$Al$_{23}$ Heusler alloy over a broad temperature range. The paper reports the first experimental determination of the low-lying phonon dispersi on curves for this alloy system. We find that the frequencies of the TA$_2$ modes are relatively low. This branch exhibits an anomaly (dip) at a wave number $xi_{0} ={1/3}approx 0.33$, which softens with decreasing temperature. Associated with this anomalous dip at $xi_{0}$, an elastic central peak scattering is also present. We have also observed satellites due to the magnetic ordering.
On the basis of the density functional calculations in combination with the supercell approach, we report on a complete study of the influences of atomic arrangement and Ni substitution for Al on the ground state structural and magnetic properties fo r Fe$_2$Ni$_{1+x}$Al$_{1-x}$ Heusler alloys. We discuss systematically the competition between five cubic Heusler-type structures formed by shuffles of Fe and Ni atoms to reveal routes for improving the phase stability and magnetic properties, in particular magnetocrystalline anisotropy~(MAE). We predict that in case of Fe$_2$NiAl the ground state cubic structure with alternated layers of Fe and Ni possesses the highest uniaxial MAE which twice larger than that for the tetragonal L1$_0$ FeNi. The successive Ni doping at Al sublattice leads to a change of ground state structure and to reduce of the MAE. In addition, the phase stability against the decomposition into the stable systems at finite-temperatures is discussed. All~Ni-rich Fe$_2$Ni$_{1+x}$Al$_{1-x}$ are turned to be decomposed into a dual-phase consisting of Fe$_2$NiAl and FeNi.
Novel filled skutterudites EpyNi4Sb12-xSnx (Ep = Ba and La) have been prepared by arc melting followed by annealing at 250C, 350C and 450C up to 30 days in sealed quartz vials. A maximum filling level of y = 0.93 and y = 0.65 was achieved for the Ba and La filled skutterudite, respectively. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were employed for measurements of the physical properties i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. Resistivity data showed a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from maxima in the Seebeck coefficient data as a function of temperature. Temperature dependent single crystal X-ray structure analyses (at 100 K, 200 K and 300 K) revealed the thermal expansion coefficients, Einstein and Debye temperatures for two selected samples Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data compare well with Debye temperatures from measurements of specific heat (4.4 K < T < 200 K). Several mechanical properties were measured and evaluated. Thermal expansion coefficients are 11.8.10-6 K-1 for Ni4Sb8.2Sn3.8 to 13.8.10-6 K-1 for Ba0.92Ni4Sb6.7Sn5.3. Room temperature Vickers hardness values (up to a load of 24.5 mN) vary within the range of 2.6 GPa to 4.7 GPa. Severe plastic deformation (SPD) via high-pressure torsion (HPT) was used to introduce nanostructuring. Physical properties before and after HPT were compared, showing no significant effect on the materials thermoelectric behaviour.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا