ﻻ يوجد ملخص باللغة العربية
Deep neural speech and audio processing systems have a large number of trainable parameters, a relatively complex architecture, and require a vast amount of training data and computational power. These constraints make it more challenging to integrate such systems into embedded devices and utilise them for real-time, real-world applications. We tackle these limitations by introducing DeepSpectrumLite, an open-source, lightweight transfer learning framework for on-device speech and audio recognition using pre-trained image convolutional neural networks (CNNs). The framework creates and augments Mel-spectrogram plots on-the-fly from raw audio signals which are then used to finetune specific pre-trained CNNs for the target classification task. Subsequently, the whole pipeline can be run in real-time with a mean inference lag of 242.0 ms when a DenseNet121 model is used on a consumer-grade Motorola moto e7 plus smartphone. DeepSpectrumLite operates decentralised, eliminating the need for data upload for further processing. By obtaining state-of-the-art results on a set of paralinguistics tasks, we demonstrate the suitability of the proposed transfer learning approach for embedded audio signal processing, even when data is scarce. We provide an extensive command-line interface for users and developers which is comprehensively documented and publicly available at https://github.com/DeepSpectrum/DeepSpectrumLite.
In this manuscript, the topic of multi-corpus Speech Emotion Recognition (SER) is approached from a deep transfer learning perspective. A large corpus of emotional speech data, EmoSet, is assembled from a number of existing SER corpora. In total, Emo
Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to both estimating the data distribution and generating high-quality samples. Efficient sampling for this class of models has however remained an elu
This paper presents a self-supervised learning framework, named MGF, for general-purpose speech representation learning. In the design of MGF, speech hierarchy is taken into consideration. Specifically, we propose to use generative learning approache
In this work, we address the problem of musical timbre transfer, where the goal is to manipulate the timbre of a sound sample from one instrument to match another instrument while preserving other musical content, such as pitch, rhythm, and loudness.
Fake audio attack becomes a major threat to the speaker verification system. Although current detection approaches have achieved promising results on dataset-specific scenarios, they encounter difficulties on unseen spoofing data. Fine-tuning and ret