ﻻ يوجد ملخص باللغة العربية
As is widely-known, the eigen-functions of the Landau problem in the symmetric gauge are specified by two quantum numbers. The first is the familiar Landau quantum number $n$, whereas the second is the magnetic quantum number $m$, which is the eigen-value of the canonical orbital angular momentum (OAM) operator of the electron. The eigen-energies of the system depend only on the first quantum number $n$, and the second quantum number $m$ does not correspond to any direct observables. This seems natural since the canonical OAM is generally believed to be a {it gauge-variant} quantity, and observation of a gauge-variant quantity would contradict a fundamental principle of physics called the {it gauge principle}. In recent researches, however, Bliohk et al. analyzed the motion of helical electron beam along the direction of a uniform magnetic field, which was mostly neglected in past analyses of the Landau states. Their analyses revealed highly non-trivial $m$-dependent rotational dynamics of the Landau electron, but the problem is that their papers give an impression that the quantum number $m$ in the Landau eigen-states corresponds to a genuine observable. This compatibility problem between the gauge principle and the observability of the quantum number $m$ in the Landau eigen-states was attacked in our previous letter paper. In the present paper, we try to give more convincing answer to this delicate problem of physics, especially by paying attention not only to the {it particle-like} aspect but also to the {it wave-like} aspect of the Landau electron.
One intriguing issue in the nucleon spin decomposition problem is the existence of two types of decompositions, which are representably characterized by two different orbital angular momenta (OAMs) of quarks. The one is the manifestly gauge-invariant
Consider a space object in an orbit about the earth. An uncertain initial state can be represented as a point cloud which can be propagated to later times by the laws of Newtonian motion. If the state of the object is represented in Cartesian earth c
The causal compatibility question asks whether a given causal structure graph -- possibly involving latent variables -- constitutes a genuinely plausible causal explanation for a given probability distribution over the graphs observed variables. Algo
We analyze the analytic Landau damping problem for the Vlasov-HMF equation, by fixing the asymptotic behavior of the solution. We use a new method for this scattering problem, closer to the one used for the Cauchy problem. In this way we are able to
The question whether the total gluon angular momentum in the nucleon can be decomposed into its spin and orbital parts without conflict with the gauge-invariance principle has been an object of long-lasting debate. Despite a remarkable progress achie