Spin orbit torque nano-oscillators by dipole field-localized spin wave modes


الملخص بالإنكليزية

We demonstrate a high-quality spin orbit torque nano-oscillator comprised of spin wave modes confined by the magnetic field by the strongly inhomogeneous dipole field of a nearby micromagnet. This approach enables variable spatial confinement and systematic tuning of magnon spectrum and spectral separations for studying the impact of multi-mode interactions on auto-oscillations. We find these dipole field-localized spin wave modes exhibit good characteristic properties as auto-oscillators--narrow linewidth and large amplitude--while persisting up to room temperature. We find that the linewidth of the lowest-lying localized mode is approximately proportional to temperature in good agreement with theoretical analysis of the impact of thermal fluctuations. This demonstration of a clean oscillator with tunable properties provides a powerful tool for understanding the fundamental limitations and linewidth contributions to improve future spin-Hall oscillators.

تحميل البحث