ﻻ يوجد ملخص باللغة العربية
Nuclear magnetic resonance (NMR) schemes can be applied to micron-, and nanometer-sized samples by the aid of quantum sensors such as nitrogen-vacancy (NV) color centers in diamond. These minute devices allow for magnetometry of nuclear spin ensembles with high spatial and frequency resolution at ambient conditions, thus having a clear impact in different areas such as chemistry, biology, medicine, and material sciences. In practice, NV quantum sensors are driven by microwave (MW) control fields with a twofold objective: On the one hand, MW fields bridge the energy gap between NV and nearby nuclei which enables a coherent and selective coupling among them while, on the other hand, MW fields remove environmental noise on the NV leading to enhanced interrogation time. In this work we review distinct MW radiation patterns, or dynamical decoupling techniques, for nanoscale NMR applications.
We propose a scheme for mixed dynamical decoupling (MDD), where we combine continuous dynamical decoupling with robust sequences of phased pulses. Specifically, we use two fields for decoupling, where the first continuous driving field creates dresse
We show that topological equivalence classes of circles in a two-dimensional square lattice can be used to design dynamical decoupling procedures to protect qubits attached on the edges of the lattice. Based on the circles of the topologically trivia
We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, i
We present rigorous performance bounds for the optimal dynamical decoupling pulse sequence protecting a quantum bit (qubit) against pure dephasing. Our bounds apply under the assumption of instantaneous pulses and of bounded perturbing environment an
We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing the qubits transition frequenc