ترغب بنشر مسار تعليمي؟ اضغط هنا

2-bit topological-encoded acoustic multifunctional device

73   0   0.0 ( 0 )
 نشر من قبل Wei Xiong
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. Xiong




اسأل ChatGPT حول البحث

Valley degree of freedom, an excellent information carrier in valleytronics, has been further introduced into advanced microstructure systems for achieving the acoustic valley-Hall topological insulators (VHTIs), which host valley-projected edge states suppressing the undesired sound backscattering under certain perturbations. Therein, the majority of previous literatures focused on single frequency region, and the lack of capability of simultaneous multi-band operation with individual control radically impedes their potential applications. Here, a binary topological-encoded acoustic VHTI is investigated both theoretically and experimentally to manipulate each of the dual-band valley-projected edge states. Through arranging different coding elements derived from the combined valley-Chern numbers, the existence and propagation directions of the frequency selective edge states can be configured in corresponding frequency regions individually. On this basis, three types of proof-of-concept acoustic topological-encoded functional devices are designed, including frequency beam splitter, anti-interference demultiplex topological sensing and composite topological whispering gallery. Our proposal may provide versatile possibilities for achieving the integrated multifunctional systems in multi-channel signal processing and memorizing with high efficiency and high capacity.



قيم البحث

اقرأ أيضاً

Mutiferroics are a novel class of next generation multifunctional materials, which display simultaneous magnetic spin, electric dipole, and ferroelastic ordering, and have drawn increasing interest due to their multi-functionality for a variety of de vice applications. Since single-phase materials exist rarely in nature with such cross-coupling properties, an intensive research activity is being pursued towards the discovery of new single-phase multiferroic materials and the design of new engineered materials with strong magneto-electric (ME) coupling. This review article summarizes the development of different kinds of multiferroic material: single-phase and composite ceramic, laminated composite, and nanostructured thin films. Thin-film nanostructures have higher magnitude direct ME coupling values and clear evidence of indirect ME coupling compared with bulk materials. Promising ME coupling coefficients have been reported in laminated composite materials in which signal to noise ratio is good for device fabrication. We describe the possible applications of these materials.
Acoustic systems that are without limitations imposed by the Fermi level have been demonstrated as significant platform for the exploration of fruitful topological phases. By surrounding the nontrivial domain with trivial environment, the domain-wall topological states have been theoretically and experimentally demonstrated. In this work, based on the topological crystalline insulator with a kagome lattice, we rigorously derive the corresponding Hamiltonian from the traditional acoustics perspective, and exactly reveal the correspondences of the hopping and onsite terms within acoustic systems. Crucially, these results directly indicate that instead of applying the trivial domain, the soft boundary condition precisely corresponds to the theoretical models which always require generalized chiral symmetry. These results provide a general platform to construct desired acoustic topological devices hosting desired topological phenomena for versatile applications.
The increasing capacity of modern computers, driven by Moores Law, is accompanied by smaller noise margins and higher error rates. In this paper we propose a memory device, consisting of a ring of two identical overdamped bistable forward-coupled osc illators, which may serve as a building block in a larger scale solution to this problem. We show that such a system is capable of storing one bit and its performance improves with the addition of noise. The proposed device can be regarded as asynchronous, in the sense that stored information can be retrieved at any time and, after a certain synchronization time, the probability of erroneous retrieval does not depend on the interrogated oscillator. We characterize memory persistence time and show it to be maximized for the same noise range that both minimizes the probability of error and ensures synchronization. We also present experimental results for a hard-wired version of the proposed memory, consisting of a loop of two Schmitt triggers. We show that this device is capable of storing one bit and does so more efficiently in the presence of noise.
319 - Qiji Ze , Xiao Kuang , Shuai Wu 2019
Shape-programmable soft materials that exhibit integrated multifunctional shape manipulations, including reprogrammable, untethered, fast, and reversible shape transformation and locking, are highly desirable for a plethora of applications, including soft robotics, morphing structures, and biomedical devices. Despite recent progress, it remains challenging to achieve multiple shape manipulations in one material system. Here, we report a novel magnetic shape memory polymer composite to achieve this. The composite consists of two types of magnetic particles in an amorphous shape memory polymer matrix. The matrix softens via magnetic inductive heating of low-coercivity particles, and high-remanence particles with reprogrammable magnetization profiles drive the rapid and reversible shape change under actuation magnetic fields. Once cooled, the actuated shape can be locked. Additionally, varying the particle loadings for heating enables sequential actuation. The integrated multifunctional shape manipulations are further exploited for applications including soft magnetic grippers with large grabbing force, sequential logic for computing, and reconfigurable antennas. Keyword: shape memory polymers, soft active materials, magnetic soft material, soft robotics, soft material computing
The role of stoichiometry and growth temperature in the preferential nucleation of material phases in the Li-Nb-O family are explored yielding an empirical growth phase diagram. It is shown that while single parameter variation often produces multi-p hase films, combining substrate temperature control with the previously published lithium flux limited growth allows the repeatable growth of high quality single crystalline films of many different oxide phases. Higher temperatures (800-1050 {deg}C) than normally used in MBE were necessary to achieve high quality materials. At these temperatures the desorption of surface species is shown to play an important role in film composition. Using this method single phase films of NbO, NbO$_{2}$, LiNbO$_{2}$, Li$_{3}$NbO$_{4}$, LiNbO$_{3}$, and LiNb$_{3}$O$_{8}$ have been achieved in the same growth system, all on c-plane sapphire. Finally, the future of these films in functional oxide heterostructures is briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا