ﻻ يوجد ملخص باللغة العربية
Isocyanic acid (HNCO) is a simple molecule with a potential to form prebiotic and complex organic species. Using a spectral survey collected with the Atacama Pathfinder EXperiment (APEX), in this work we report the detection of 42 transitions of HNCO in the hot molecular core/outflow G331.512-0.103 (hereafter G331). The spectral lines were observed in the frequency interval $sim$ 160 - 355 GHz. By means of Local Thermodynamic Equilibrium (LTE) analyses, applying the rotational diagram method, we studied the excitation conditions of HNCO. The excitation temperature and column density are estimated to be $T_{ex}$ = 58.8 $pm$ 2.7 K and $N$ = (3.7 $pm$ 0.5) $times$ 10$^{15}$ cm$^{-2}$, considering beam dilution effects. The derived relative abundance is between (3.8 $pm$ 0.5) $times $10$^{-9}$ and (1.4 $pm$ 0.2) $times $10$^{-8}$. In comparison with other hot molecular cores, our column densities and abundances are in agreement. An update of the internal partition functions of the four CHNO isomers: HNCO; cyanic acid, HOCN; fulminic acid, HCNO; and isofulminic acid, HONC is provided. We also used the astrochemical code Nautilus to model and discuss HNCO abundances. The simulations could reproduce the abundances with a simple zero-dimensional model at a temperature of 60 K and for a chemical age of $sim$ 10$^5$ years, which is larger than the estimated dynamical age for G331. This result could suggest the need for a more robust model and even the revision of chemical reactions associated with HNCO.
Using APEX-1 and APEX-2 observations, we have detected and studied the rotational lines of the HC$_3$N molecule (cyanoacetylene) in the powerful outflow/hot molecular core G331.512-0.103. We identified thirty-one rotational lines at $J$ levels betwee
We present observations and analysis of the massive molecular outflow G331.512-0.103, obtained with ALMA band 7, continuing the work from Merello et al. (2013). Several lines were identified in the observed bandwidth, consisting of two groups: lines
Isocyanic acid (HNCO), the most stable of the simplest molecules containing the four main elements essential for organic chemistry, has been observed in several astrophysical environments such as molecular clouds, star-forming regions, external galax
We present Submillimeter Array (SMA) observations toward the high-mass star-forming region IRAS 18566+0408. Observations at 1.3 mm continuum and in several molecular line transitions were performed in the compact (2.4 angular resolution) and very-ext
Spectral line surveys reveal rich molecular reservoirs in G331.512-0.103, a compact radio source in the center of an energetic molecular outflow. In this first work, we analyse the physical conditions of the source by means of CH$_3$OH and CH$_3$CN.