ﻻ يوجد ملخص باللغة العربية
We investigate a theoretical model for a dynamic Moire grating which is capable of producing slow and stopped light with improved performance when compared with a static Moire grating. A Moire grating superimposes two grating periods which creates a narrow slow light resonance between two band gaps. A Moire grating can be made dynamic by varying its coupling strength in time. By increasing the coupling strength the reduction in group velocity in the slow light resonance can be improved by many orders of magnitude while still maintaining the wide bandwidth of the initial, weak grating. We show that for a pulse propagating through the grating this is a consequence of altering the pulse spectrum and therefore the grating can also perform bandwidth modulation. Finally we present a possible realization of the system via an electro-optic grating by applying a quasi-static electric field to a poled $chi^{(2)}$ nonlinear medium.
We demonstrate the use of nanodiamond in constructing holographic nanoparticle-polymer composite transmission gratings with large saturated refractive index modulation amplitudes at both optical and slow-neutron wavelengths, resulting in efficient co
Quantum geometry has been identified as an important ingredient for the physics of quantum materials and especially of flat-band systems, such as moire materials. On the other hand, the coupling between light and matter is of key importance across di
Moire lattices consist of two identical periodic structures overlaid with a relative rotation angle. Present even in everyday life, moire lattices have been also produced, e.g., with coupled graphene-hexagonal boron nitride monolayers, graphene-graph
We obtained exact solutions for the wave function and the Green function in the slow light pulse with the group velocity, consistent with the Fermi velocity in graphene.
Slow-light media are of interest in the context of quantum computing and enhanced measurement of quantum effects, with particular emphasis on using slow-light with single photons. We use light-in-flight imaging with a single photon avalanche diode ca