ﻻ يوجد ملخص باللغة العربية
With the overwhelming popularity of Knowledge Graphs (KGs), researchers have poured attention to link prediction to fill in missing facts for a long time. However, they mainly focus on link prediction on binary relational data, where facts are usually represented as triples in the form of (head entity, relation, tail entity). In practice, n-ary relational facts are also ubiquitous. When encountering such facts, existing studies usually decompose them into triples by introducing a multitude of auxiliary virtual entities and additional triples. These
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction
Tensor, an extension of the vector and matrix to the multi-dimensional case, is a natural way to describe the N-ary relational data. Recently, tensor decomposition methods have been introduced into N-ary relational data and become state-of-the-art on
Multi-relational graph is a ubiquitous and important data structure, allowing flexible representation of multiple types of interactions and relations between entities. Similar to other graph-structured data, link prediction is one of the most importa
For many years, link prediction on knowledge graphs (KGs) has been a purely transductive task, not allowing for reasoning on unseen entities. Recently, increasing efforts are put into exploring semi- and fully inductive scenarios, enabling inference
Currently, Chronic Kidney Disease (CKD) is experiencing a globally increasing incidence and high cost to health systems. A delayed recognition implies premature mortality due to progressive loss of kidney function. The employment of data mining to di