ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Cooperative Driving in Multi-Intersection Road Networks

94   0   0.0 ( 0 )
 نشر من قبل Huaxin Pei
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Cooperative driving at isolated intersections attracted great interest and had been well discussed in recent years. However, cooperative driving in multi-intersection road networks remains to be further investigated, because many algorithms for isolated intersection cannot be directly adopted for road networks. In this paper, we propose a distributed strategy to appropriately decompose the problem into small-scale sub-problems that address vehicle cooperation within limited temporal-spatial areas and meanwhile assure appropriate coordination between adjacent areas by specially designed information exchange. Simulation results demonstrate the efficiency-complexity balanced advantage of the proposed strategy under various traffic demand settings.



قيم البحث

اقرأ أيضاً

The topic of this paper is the design of a fully distributed and real-time capable control scheme for the automation of road intersections. State of the art Vehicle-to-Vehicle (V2V) communication technology is adopted. Vehicles distributively negotia te crossing priorities by a Consensus-Based Auction Algorithm (CBAA-M). Then, each agent solves a nonlinear Model Predictive Control (MPC) problem that computes the optimal trajectory avoiding collisions with higher priority vehicles and deciding the crossing order. The scheme is shown to be real-time capable and able to respond to sudden priority changes, e.g. if a vehicle gets an emergency call. Simulations reinforce theoretical results.
Cooperative driving at signal-free intersections, which aims to improve driving safety and efficiency for connected and automated vehicles, has attracted increasing interest in recent years. However, existing cooperative driving strategies either suf fer from computational complexity or cannot guarantee global optimality. To fill this research gap, this paper proposes an optimal and computationally efficient cooperative driving strategy with the polynomial-time complexity. By modeling the conflict relations among the vehicles, the solution space of the cooperative driving problem is completely represented by a newly designed small-size state space. Then, based on dynamic programming, the globally optimal solution can be searched inside the state space efficiently. It is proved that the proposed strategy can reduce the time complexity of computation from exponential to a small-degree polynomial. Simulation results further demonstrate that the proposed strategy can obtain the globally optimal solution within a limited computation time under various traffic demand settings.
244 - Shuai Sun , Yilin Mo 2021
Due to the wide application of average consensus algorithm, its security and privacy problems have attracted great attention. In this paper, we consider the system threatened by a set of unknown agents that are both malicious and curious, who add add itional input signals to the system in order to perturb the final consensus value or prevent consensus, and try to infer the initial state of other agents. At the same time, we design a privacy-preserving average consensus algorithm equipped with an attack detector with a time-varying exponentially decreasing threshold for every benign agent, which can guarantee the initial state privacy of every benign agent, under mild conditions. The attack detector will trigger an alarm if it detects the presence of malicious attackers. An upper bound of false alarm rate in the absence of malicious attackers and the necessary and sufficient condition for there is no undetectable input by the attack detector in the system are given. Specifically, we show that under this condition, the system can achieve asymptotic consensus almost surely when no alarm is triggered from beginning to end, and an upper bound of convergence rate and some quantitative estimates about the error of final consensus value are given. Finally, numerical case is used to illustrate the effectiveness of some theoretical results.
Unsignalized intersection cooperation of connected and automated vehicles (CAVs) is able to eliminate green time loss of signalized intersections and improve traffic efficiency. Most of the existing research on unsignalized intersection cooperation c onsiders fixed lane direction, where only specific turning behavior of vehicles is allowed on each lane. Given that traffic volume and the proportion of vehicles with different turning expectation may change with time, fixed lane direction may lead to inefficiency at intersections. This paper proposes a multi-lane unsignalized intersection cooperation method that considers flexible lane direction. The two-dimensional distribution of vehicles is calculated and vehicles that are not in conflict are scheduled to pass the intersection simultaneously. The formation reconfiguration method is utilized to achieve collision-free longitudinal and lateral position adjustment of vehicles. Simulations are conducted at different input traffic volumes and turning proportion of incoming vehicles, and the results indicate that our method outperformances the fixed-lane-direction unsignalized cooperation method and the signalized method.
Cooperative Intelligent Transportation Systems (C-ITS) will change the modes of road safety and traffic management, especially at intersections without traffic lights, namely unsignalized intersections. Existing researches focus on vehicle control wi thin a small area around an unsignalized intersection. In this paper, we expand the control domain to a large area with multiple intersections. In particular, we propose a Multi-intersection Vehicular Cooperative Control (MiVeCC) to enable cooperation among vehicles in a large area with multiple unsignalized intersections. Firstly, a vehicular end-edge-cloud computing framework is proposed to facilitate end-edge-cloud vertical cooperation and horizontal cooperation among vehicles. Then, the vehicular cooperative control problems in the cloud and edge layers are formulated as Markov Decision Process (MDP) and solved by two-stage reinforcement learning. Furthermore, to deal with high-density traffic, vehicle selection methods are proposed to reduce the state space and accelerate algorithm convergence without performance degradation. A multi-intersection simulation platform is developed to evaluate the proposed scheme. Simulation results show that the proposed MiVeCC can improve travel efficiency at multiple intersections by up to 4.59 times without collision compared with existing methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا