A windowed correlation based feature selection method to improve time series prediction of dengue fever cases


الملخص بالإنكليزية

The performance of data-driven prediction models depends on the availability of data samples for model training. A model that learns about dengue fever incidence in a population uses historical data from that corresponding location. Poor performance in prediction can result in places with inadequate data. This work aims to enhance temporally limited dengue case data by methodological addition of epidemically relevant data from nearby locations as predictors (features). A novel framework is presented for windowing incidence data and computing time-shifted correlation-based metrics to quantify feature relevance. The framework ranks incidence data of adjacent locations around a target location by combining the correlation metric with two other metrics: spatial distance and local prevalence. Recurrent neural network-based prediction models achieve up to 33.6% accuracy improvement on average using the proposed method compared to using training data from the target location only. These models achieved mean absolute error (MAE) values as low as 0.128 on [0,1] normalized incidence data for a municipality with the highest dengue prevalence in Brazils Espirito Santo. When predicting cases aggregated over geographical ecoregions, the models achieved accuracy improvements up to 16.5%, using only 6.5% of incidence data from ranked feature sets. The paper also includes two techniques for windowing time series data: fixed-sized windows and outbreak detection windows. Both of these techniques perform comparably, while the window detection method uses less data for computations. The framework presented in this paper is application-independent, and it could improve the performances of prediction models where data from spatially adjacent locations are available.

تحميل البحث